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Pain is an unpleasant sensory and emotional 
experience, associated with actual or potential 
tissue damage, which activates specific affer-
ent neurons termed nociceptors. Nociceptors 
also respond to various stimuli, including 
mechanical, thermal, chemical and electrical 
stimuli, and are therefore regarded as polymo-
dal receptors. Nociceptors can become sensi-
tized to these stimuli and respond more vigor-
ously upon acute activation. Chronic pain is a 
major healthcare problem, with moderate-to-
severe chronic pain occuring in 19% of adult 
Europeans, seriously affecting the quality of 
social and working life  [1]. Recent progress 
using animal models and genetic studies has 
advanced our understanding of the mecha-
nisms of pain [2,3]. However, the findings of 
pain studies when using animal models are 
known to be affected by a wide range of fac-
tors that must be taken into account. In addi-
tion, it is known that rodents lack specific 
brain structures crucial for the experience of 

pain in humans [4–6]. These considerations 
have encouraged the study of pain, not only in 
animals, but also in humans. 

Itch (pruritus) can be defined as an unpleas-
ant cutaneous sensation associated with the 
immediate desire to scratch [7,8]. Chronic itch 
disrupts sleep, reduces the quality of life and 
undermines the health of those who suffer from 
it [9]. Clinically, itch is one of the most com-
mon symptoms of skin diseases, and markedly 
affects quality of life [8,10]. Current evidence 
clearly indicates the existence of an interactive 
network between the skin and the peripheral 
nervous system, as well as the CNS, regulating 
and responding to pruritic stimuli [8]. Itch may 
be interpreted as a defense mechanism by which 
potentially dangerous organisms or stimuli in 
the skin and adjoining mucosa are disposed [8]. 
Although it is clearly distinct from pain as a sen-
sation and also with respect to the stimuli pro-
ducing it [11], itch can markedly decrease quality 
of life in some pathological conditions, and thus 
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NGF is a well-known neurotrophic factor essential for the survival and maintenance of primary 
afferent neurons and sympathetic neurons. NGF is also an inflammatory mediator associated 
with pain and itch. Congenital insensitivity to pain with anhidrosis is a genetic disorder due to 
loss-of-function mutations in the NTRK1 gene encoding TrkA, a receptor tyrosine kinase for 
NGF. Since patients with congenital insensitivity to pain with anhidrosis lack NGF-dependent 
unmyelinated (C-) and thinly myelinated (Ad-) fibers, and their dermal sweat glands are without 
innervation, they exhibit no pain, itch, signs of neurogenic inflammation or sympathetic skin 
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article indicates how NGF-dependent neurons are essential for the establishment of neural 
networks for interoception and homeostasis, and play crucial roles in brain–immune–endocrine 
interactions in pain, itch and inflammation. In addition, it refers to involvements of the NGF-TrkA 
system in various disease states, and potential pharmacological effects when this system 
is targeted.
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require treatment [12]. Chronic pruritus of any origin is frequently 
seen in daily medical practice, and treatment of it is challeng-
ing. Recent studies of pruritus may yield neurophysiological and 
neurochemical therapeutic models, and the possibility of treating 
patients with refractory itching of various origins [13].

Pain and itch share many mediators and/or receptor molecules, 
as well as primary afferent neurons and processing centers, and 
induce similar autonomous skin reactions [7,14]. Chronic pain 
and central sensitization to itch appear to be neurophysiologically 
related phenomena [12,14,15]. Scratching highlights the close rela-
tion of pain and itch, and itch appears to be under tonic inhibitory 
control by pain-related signals [8,14,15]. However, itch and pain 
serve different purposes. In contrast to pain-related withdrawal 
reflexes, itching stimuli provokes a characteristic scratch reflex, 
both related to the protection of the body against tissue damage. 
This close connection suggests that the neuronal apparatus for 
itch has developed as a nocifensive system for the removal of irri-
tating objects and agents assaulting the skin; thereby protecting 
the body’s integrity (e.g., against parasites, insects, sharp objects, 
irritants and allergens). Thus, the possession of skin capable of 
inducing the symptom of itch may have afforded a substantial 
advantage during evolution [14].

NGF plays a pivotal role in controlling the survival and differen-
tiation of the nervous system during embryonic development and 
in the early postnatal stage. NGF is a neurotrophic factor essen-
tial for the survival and maintenance of various types of neurons; 
including the nociceptive neurons, autonomic sympathetic neu-
rons and some neurons of the CNS [16–19]. Discovered as a target 
derived survival factor, it is known to control cell fate and axon 
growth and guidance, and is required for the survival of nocicep-
tors during development. However, it may also play an important 
role during inflammatory processes in adult animals [18]. NGF has 
two receptors: the p75 neurotrophin receptor (p75NTR), a member 
of the tumor necrosis factor receptor superfamily; and TrkA, a 
receptor tyrosine kinase. There is considerable evidence for func-
tional involvement of p75NTR in mechanisms of NGF-induced neu-
ronal modulation, nerve fiber sprouting and degeneration [19,20]. 
This article, however, describes a disorder due to genetic defects 
in TrkA, and thus focuses on this receptor. Target-derived NGF 
mediates biological effects by binding to and activating the TrkA 
receptor at nerve terminals [19,21–26]. The activated TrkA receptor 
then exerts local effects at nerve terminals and retrograde effects at 
the neuronal cell bodies that often reside at considerable distances 
from the terminals. Recent experiments have suggested that the 
major retrograde signal required for survival and expression of 
various genes is of activated TrkA itself [19,21–26]. 

Genetic studies of pain pathways have complemented the tra-
ditional neuroscience approaches of electrophysiology and phar-
macology to yield fresh insights into the molecular basis of pain 
perception [27]. Genetic variants that interfere with pain have 
implications for pain medicine [28]. Congenital insensitivity to 
pain with anhidrosis (CIPA; also known as hereditary sensory 
and autonomic neuropathy type IV) is an autosomal recessive 
genetic disorder characterized by insensitivity to noxious stim-
uli, anhidrosis (inability to sweat) and mental retardation [29–36]. 

CIPA is due to loss-of-function mutations in the NTRK1 (also 
known as TRKA) gene encoding a receptor tyrosine kinase (TrkA) 
for NGF [32–35,37–41]. Patients with CIPA lack NGF-dependent 
neurons, including primary afferent neurons with thin fibers, 
sympathetic postganglionic neurons and possibly several types 
of neurons in the brain [30–35]. NGF-dependent primary afferent 
neurons with thin fibers (NGF-dependent primary afferents) are 
defined as primary afferent neurons with small-diameter, thinly 
myelinated Ad-fibers or unmyelinated C-fibers that depend 
on the NGF-TrkA system during development. These neurons 
include polymodal receptors [42], and probably a subpopulation 
of C-nociceptors, which do not respond to mechanical stimuli, 
and thus are not polymodal, but exhibit discharge patterns asso-
ciated with the sensation of itch [43] and nociceptors with low 
electrical thresholds, and are thus unlikely to be mechanically 
insensitive fibers, which also mediate itch in humans [44,45]. Due 
to a lack of NGF-dependent primary afferents, patients with 
CIPA lack both pain and itch sensation, as well as axon reflexes 
in the skin associated with neurogenic inflammation [30,31,33–35]. 
Inflammatory responses in patients with CIPA differ from those 
in nonaffected individuals, and thus provide unique opportu-
nities to explore the functions of NGF-dependent neurons in 
pain, itch and inflammation not available with animal studies. 
Although CIPA patients and TrkA gene knockout mice share 
some characteristic behaviors and features, some behaviors and 
clinical features in humans, such as anhidrosis, are not apparent or 
recognized in these mutant mice [33–35]. The reason for this might 
involve species differences or alternatively, technical difficulties 
in the analysis of mice. Indeed, gene knockout mice die within a 
month, hampering extended behavioral and neurophysiological 
studies of them. Patients with CIPA might, therefore, provide 
clues regarding use of the NGF-TrkA system as a target to treat 
pain, itch and inflammation. 

The NGF-TrkA system is important for evolutionarily con-
served biological mechanisms, including interoception, homeo-
stasis, emotion and stress responses. All these biological mecha-
nisms probably underlie acquired human pain states, itch and 
inflammation. This article is intended to provide some perspective 
on the roles of the NGF-TrkA system in itch, pain and inflam-
mation. NGF itself plays important roles in inflammation and 
disease states and probably causes neuronal sensitization in both 
pain and itch. NGF and/or its receptor TrkA may, therefore, be 
useful as targets for therapeutic intervention in alleviating these 
uncomfortable conditions. 

Interoception, sympathetic neurons & homeostasis
NGF-dependent primary afferent neurons have small-diameter, 
thinly myelinated Ad-fibers or unmyelinated C-fibers, with cell 
bodies located in the dorsal root ganglion (DRG) alongside the 
spinal cord or in the trigeminal ganglion (Figure 1). A subset of 
NGF-dependent primary afferents in the glossopharyngeal nerve 
(IX) and the vagus nerve (X) transmit visceral afferent informa-
tion to the brain from the head and neck, and from the thoracic 
and abdominal cavities, respectively. NGF-dependent primary 
afferents innervate all tissues of the body, including skin, muscle, 
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joints, teeth and visceral tissue, and mediate various sensations, 
including pain, temperature and itch [11,12,46,47]. NGF-dependent 
primary afferents also innervate blood vessels (Figure 1). Recent 
studies have yielded important evidence that NGF-dependent 
primary afferents also transmit sensation of the body’s interior; 
the interoceptive sense [4,6]. They are thus also referred to as 
‘interoceptive polymodal receptors’ [35]. NGF-dependent primary 
afferents terminate in lamina I of the spinal dorsal horns and 
trigeminal nucleus, conducting information on numerous types 
of physiological conditions via intervening pathways (such as the 
spinothalamic tract) to the brain (Figure 1).

The interoceptive system is considered a homeostatic afferent 
pathway representing the physiological status of all tissues of the 
body, including the mechanical, thermal, chemical, metabolic and 
hormonal status of the skin, muscle, joints, teeth and viscera [4,6]. 
The interoceptive polymodal receptors convey slow activity that 

transmits changes in a wide variety of physiological conditions – 
not only temperature and mechanical stress, but also local metabo-
lism (acidic pH, hypoxia, hypercapnia, hypoglycemia, hypo-osmo-
larity and lactic acid), cell rupture (ATP and glutamate), cutaneous 
parasite penetration (histamine), mast cell activation (serotonin, 
bradykinin and eicosanoids) and immune and hormonal activ-
ity (cytokines and somatostatin) [4,6]. Exogenous or endogenous 
trigger factors, including those described above, may directly or 
indirectly stimulate NGF-dependent primary afferents (Figure 1). 
Thus, interoceptive polymodal receptors comprise a homeostatic 
afferent pathway, rather than simply a nociceptive pathway. 

Autonomic sympathetic nerves are involved in the regulation of 
blood circulation, lymphatic function and various internal organs, 
as well as the regulation of skin appendages, including sweat glands, 
apocrine glands and hair follicles. Sympathetic postganglionic neu-
rons, whose cell bodies are located in the sympathetic ganglion 
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Figure 1. Patients with congenital insensitivity to pain with anhidrosis lack NGF-dependent primary afferent neurons with 
thin fibers (NGF-dependent primary afferents) and autonomic sympathetic postganglionic neurons. NGF-dependent primary 
afferents are DRG neurons or trigeminal ganglia (V) neurons with free nerve endings. A subset of neurons in the glossopharyngeal nerve 
(IX) and the vagus nerve (X) are probably NGF-dependent neurons. Sympathetic postganglionic neurons innervate blood vessels, 
piloerector muscle and sweat glands, as well as other target organs or tissues in the body. Postganglionic fibers to sweat glands are 
exceptionally cholinergic. Trigger factors (shown by bold arrow) may directly or indirectly stimulate NGF-dependent primary afferents. 
Upon stimulation, these neurons release neuropeptides (SP and CGRP), which modulate inflammation, pain and itch. Sympathetic 
postganglionic neurons can also influence inflammation.  
CGRP: Calcitonin gene-related peptide; DRG: Dorsal root ganglia; SG: Sympathetic ganglion; SP: Substance P; STT: Spinothalamic tract.
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(SG), are also NGF-dependent neurons and innervate blood ves-
sels, piloerector muscle and sweat glands, as well as other target 
organs and tissues in the body (Figure 1). Most postganglionic nerve 
fibers are adrenergic, while those to sweat glands are cholinergic. 
Sympathetic postganglionic neurons regulate sweat gland function 
and vasoconstriction, and thereby temperature homeostasis [10]. 
The blood vessels of orofacial tissues are also innervated by cranial 
parasympathetic nerves [10,48]. Peripheral sympathetic nerve endings 
are known to release neuropeptide Y;  alone or with catecholamines, 
such as adrenaline and noradrenaline, which have synergistic effects 
on immune cells [49]. Thus, interoceptive polymodal receptors report 
the physiological status of the various tissues of the body to the brain 
and the brain maintains homeostasis in the body along with other 
autonomic, neuroendocrine and behavior mechanisms  [4,6,50]. In 
turn, integrated feedback from the entire body plays a role in emo-
tional experience [4,6,50–53]. NGF-dependent primary afferents and 
autonomic sympathetic postganglionic neurons, therefore, form an 
interface between the nervous system and the body [35].

Congenital insensitivity to pain with anhidrosis
Congenital insensitivity to pain with anhidrosis is the first 
human genetic disorder for which the molecular basis of con-
genital insensitivity to pain has been identified. CIPA is caused 
by loss-of-function mutations in the NTRK1 gene encoding the 
TrkA receptor for NGF [32–35,37–41]. Defects in NGF-TrkA signal 
transduction lead to apoptosis of various NGF-dependent neu-
rons during development. Consequently, patients with CIPA lack 
NGF-dependent neurons, and thus provide a rare opportunity 
to explore the developmental and physiological functions of the 
NGF-TrkA system in behavior, cognitive and mental activities in 
humans (for review, see [35]).

Patients with CIPA lack NGF-dependent primary affer-
ents, including interoceptive polymodal receptors (Figure 1) [35]. 
Therefore, they are unable to respond to changes in the physio-
logical conditions of all tissues of the body. Patients exhibit insen-
sitivity to both superficial and deep painful stimuli, including 
visceral perception, but touch, vibration and position senses are 
normal. A subpopulation of afferents with C-fibers is believed to 
mediate sensual (pleasant) touch. Patients with CIPA can experi-
ence a tickling sensation. However, it remains to be determined 
whether they can perceive sensual (pleasant) touch. Motor func-
tion is normal, although repeated trauma can result in secondary 
dysfunction of the motor system. Repeated fractures, dislocations 
and deformities of large weight-bearing joints are slow to heal and 
often result in Charcot joints (i.e., neuropathic arthropathy). In 
addition, osteomyelitis frequently occurs in patients with CIPA.

Patients with CIPA lack an itch pathway because Ad- and 
C-fibers are absent, and therefore patients do not exhibit axon 
reflexes (whether histamine-mediated or induced by other stim-
uli) (Figure 1) [33–35]. Interestingly, it is known that humans can 
experience itch without axon reflexes [44,45]. Histamine is a well-
recognized mediator of acute inflammation and a potent pruritic 
agent. Various immune cells, including mast cells and Langerhans 
cells, as well as other cells, such as keratinocytes and fibroblasts, 
contribute to the multiple features of acute, chronic and allergic 

inflammation (Figure 1). The axon reflex is an efferent function of 
the NGF-dependent primary afferents, in which release of neu-
ropeptides, such as substance P (SP) and calcitonin-gene related 
peptide (CGRP) (Figure 1), from the peripheral terminal induces 
vasodilation and extravasation of plasma [54]. The term ‘neu-
rogenic inflammation’ means that signs of inflammation (e.g., 
tumor, rubor, calor and dolor) develop upon activation of neu-
rons and the consecutive release of neuronal mediators (e.g., SP 
and CGRP) [55,56]. Neuropeptides released from NGF-dependent 
primary afferents induce vasodilation. It is interesting to note that 
these neuropeptides do not activate mast cells in humans, as shown 
previously [57,58]. Patients with CIPA lack the axon reflexes respon-
sible for neurogenic inflammation. In normal individuals, CGRP-
containing nerve fibers are also intimately associated with immune 
modulatory cells, such as mast cells, Merkel cells and Langerhans 
cells, suggesting a locus of interaction between the nervous system 
and immunological function [10]. These inflammatory processes 
result in modulation of immune cell function and regulation of 
mediator release (cytokines, chemokines and growth factors) from 
keratinocytes and Langerhans cells [10]. Thus, patients with CIPA 
might not exhibit protective inflammatory reactions due to a defect 
in their axon reflexes.

Patients with CIPA also lack sympathetic postganglionic neu-
rons (Figure 1) [33–35]. Sweating is controlled by the sympathetic 
nervous system and is important in maintaining body tempera-
ture, especially in humans. Because patients with CIPA do not 
sweat, they tend to develop hyperthermia when they are in a hot 
environment. Patients lack not only the thermal sweating, but also 
emotional sweating responses observed on the palmar and plantar 
surfaces [35]. Clinical and behavioral studies suggest that patients 
with CIPA also lack sympathetic innervation of various target 
tissues, including internal organs. In normal individuals, pain 
and itch also induce activation of the sympathetic nervous system, 
including the adrenal medulla, and are thus involved in various 
protective body reactions. Systemic responses of the sympathetic 
nervous system are also known as the emergency ‘fight-or-flight 
response’. Together, these findings suggest that patients with CIPA 
lack the ‘fight-or-flight response’. Thus, patients with CIPA cannot 
properly maintain a variety of neural processes, including those 
related to autonomic, neuroendocrine and behavioral responses 
in the body.

Children with CIPA are mentally retarded and exhibit severe 
learning deficits [33–35]. The emotional and learning problems 
observed suggest defects of NGF-dependent neurons in the brain, 
although there is no direct evidence that mentally retarded CIPA 
patients lack NGF-dependent neurons. It is interesting to note 
that the corresponding gene knockout mice lack basal forebrain 
cholinergic neurons (BFCNs) and striatal cholinergic neurons [59]. 
Neither BFCNs, nor striatal cholinergic neurons in the knockout 
mice, mature fully in the absence of NGF/TrkA signaling  [60]. 
Observations of disturbances in autonomic function and behav-
ioral abnormalities in CIPA patients, as well as some differences 
from gene knockout mice, such as Ngf, p75 and Trka, have been 
previously described in more detail in various references (for 
reviews, see [33–35]).
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In summary, patients with CIPA lack NGF-dependent neurons, 
including NGF-dependent primary afferents, sympathetic post-
ganglionic neurons and probably several types of neurons located 
in the brain. Consequently, they lack interoception, homeostatic 
regulation and emotional responses of the body. They are always at 
a disadvantage because of this, with threats to their survival. Thus, 
NGF-dependent neurons constitute a part of a neural network for 
interoception and homeostasis, and probably play important roles 
in emotion and adaptive behavior. Together, these findings indi-
cate that the NGF-TrkA system is essential for the establishment 
of neural networks for interoception and homeostasis. 

Brain, immune & endocrine systems
The nervous, immune and endocrine ‘super-systems’ engage in 
multiple interactions in the responses of the body to acute and 
chronic stress [61,62]. The brain is the central organ of stress, while 
the brain and the immune system are essential for homeostatic 
regulation and survival [61]. The endocrine system is engaged in 
coordinating and controlling complex responses of the brain and 
the immune system [61–69]. The central components of the stress 
system are located in the hypothalamus and the brainstem, while 
the peripheral limbs of the stress system are in the hypothalamic–
pituitary–adrenal (HPA) axis, together with the efferent sympa-
thetic/adrenomedullary systems and components of the parasym-
pathetic system [63–65,69]. The brain and the immune system are 
involved in functionally relevant cross-talk, the main function of 
which is to maintain homeostasis. The brain affects the immune 
system through neuroendocrine humoral outflow via the pituitary, 
and directly via the sympathetic and sensory innervation of periph-
eral tissues, including lymphoid organs and blood vessels [66]. The 
parasympathetic portion of the autonomic nervous system also 
plays important roles in the control of immunity and inflammation 
[10,68]. For instance, noradrenaline and adrenaline, through stimu-
lation of the b

2
-adrenoreceptor-cAMP-protein kinase A pathway, 

inhibit the production of type 1/proinflammatory cytokines, such 
as IL-12, TNF-a and IFN-g, with antigen-presenting cells and T 
helper (Th) 1 cells, while they stimulate the production of type 
2/anti-inflammatory cytokines, such as IL-10 and TGF-b [61]. SP 
stimulates most macrophage functions and upregulates TNF-a 
and IL-12 production by monocytes and macrophages, while 
CGRP downregulates pro-inflammatory TNF-a and IL-12 pro-
duction and potentiates IL-6 and IL-10 secretion [66]. Exposure 
of human macrophages to acetylcholine, the principal cholinergic 
neurotransmitter, inhibits the release of the pro-inflammatory 
cytokines TNF-a, IL-1 and IL-18 in response to endotoxin, with-
out affecting the anti-inflammatory cytokine IL-10 [68]. Evidence 
accumulated over the last two decades indicates that sympathetic 
and cholinergic neurons of the autonomic nervous system and 
NGF-dependent primary afferents modulate several immune 
parameters, and play important roles in homeostasis and inflam-
mation [49,61–69]. In accordance with the concept of ‘super-systems’, 
NGF-dependent neurons, such as polymodal receptors and sym-
pathetic postganglionic neurons, are considered communication 
routes between the brain and immune systems (Figure 1). These 
NGF-dependent neurons are also essential for interoception and 

homeostatic regulation of the body [35]. The NGF-TrkA system 
thus contributes to the establishment of a neural network between 
the brain and immune system.

Injury or tissue damage, activating NGF-dependent primary 
afferents, causes the sensation of pain and leads to systemic acti-
vation of the HPA axis, together with arousal and sympathetic 
responses. These responses are involved in various reactions that 
protect the body, including withdrawal reflexes and vasoconstric-
tion. The systemic response of the sympathetic nervous system to 
danger is the ‘fight-or-flight response’, as described above. Invasion 
of parasites and insect bites also activate NGF-dependent primary 
afferents and causes an itch sensation, leading to the desire to 
scratch the skin. Injury or microbial invasion results in the local 
release of numerous chemicals that mediate or facilitate inflamma-
tory processes [10,47,70]. Autonomic sympathetic nerves innervate 
various cells in the body, and thereby maintain homeostasis and 
regulate inflammation, as well as host defenses. Thus, mediators 
derived from NGF-dependent primary afferents or peripheral 
autonomic neurons, including sympathetic postganglionic neu-
rons, probably play important regulatory roles in the body under 
many physiological and pathological conditions.

Upon stimulation, NGF-dependent primary afferents release 
various neuromediators or neuropeptides (e.g., SP and CGRP) that 
modulate inflammation, pain and pruritus (Figure 1). In turn, these 
neuromediators trigger the release of pro-inflammatory mediators 
that might amplify or facilitate inflammation by enhancing vaso-
dilation, blood flow, vascular leakiness and leukocyte trafficking 
to sites of inflammation [67]. They also influence the expression of 
NGF and its secretion from keratinocytes [71]. Mast cells are located 
perivascularly, close to SP- and CGRP-containing neurons [62]. Mast 
cells are thus ideally equipped and placed to integrate and relay 
signals from all three super-systems during the peripheral tissue 
responses to psychological, as well as pathological, stress [62,69]. Mast 
cells are resident cells in various tissues and critical effector cells in 
inflammation. They can contribute to multiple features of acute 
and chronic, as well as allergic, inflammation [72]. Various inflam-
matory mediators derived from mast cells induce inflammation and 
also stimulate NGF-dependent primary afferents of the nose, skin 
and airways, resulting in sneezing, itching or coughing [72]. Since 
mast cells depend on NGF for homing, survival and differentiation, 
increased synthesis of NGF in inflamed tissues critically influences 
the number and activities of mast cells involved in inflammation [73].

Both pain and itch sensations are related locally to tissue dam-
age and inflammatory responses. The nervous system integrates 
the inflammatory response: it gathers information about tissue-
damaging events from several local sites, mobilizes defenses and 
creates memory of the event to improve chances for survival [67,68]. 
Pain and itch sensations also provoke emotional responses in the 
brain and probably contribute to the creation of memories sur-
rounding tissue-damaging events. It is likely that patients with 
CIPA lack these neural processes. Again, they are always at a 
disadvantage as this threatens survival.

Inflammation is considered to be a protective response of the 
body to activate the immune system, although excessive inflam-
matory and immune responses can cause morbidity and shorten 
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lifespan. Thus, inflammation and immune responses must be fine-
tuned and regulated with precision. Activation of the HPA axis 
and autonomic nervous system dampens inflammatory immune 
responses and restores host homeostasis [67]. Cortisol is a well-
known anti-inflammatory hormone and is released from adrenal 
glands through activation of the HPA axis. It acts on virtually 
all of the components of inflammatory immune responses [64]. 
Indeed, analogs of this hormone are used to suppress inflammatory 
responses associated with various clinical conditions. 

The brain is the central organ in the perception of, and in 
response to, stressors, including tissue damage and microbial inva-
sion, and determines both behavioural and physiological responses 
to them. The endocrine system is engaged in coordinating and 
controlling complex responses of the brain and the immune sys-
tem. It is thus important to understand the mechanisms of pain 
and itch from the perspective of the inflammatory response, and 
interactions among the brain and immune and endocrine systems.

Pain 
Pain is an unpleasant sensory and emotional experience associated 
with actual or potential tissue damage, or described in terms of 
such damage, according to the definition of the International 
Association for the Study of Pain. Pain is also essential for the 
proper development of drives and instincts, and probably for the 
development of related decision-making strategies [51]. It might 
thus be related to the survival of the organism via multiple neural 
processes, especially those related to homeostatic regulation.

Recently, major pain syndromes have been distinguished and 
characterized by stimulus-response relations and pain mecha-
nisms  [74]. Pain is usually an adaptive response, alerting one to 
real or impending injury and triggering appropriate protective 
responses. By contrast, some types of pain are maladaptive, in the 
sense that they neither protect nor support protective responses. 
Maladaptive dysfunctional pain, including conditions such as 
fibromyalgia and irritable bowel syndrome, is considered to be 
an amplification of nociceptive signaling in the absence of either 
inflammation or neural lesions [74]. However, sensitization of sen-
sory pathways by inflammation or NGF may also contribute to the 
development of hypersensitivity in neighboring organs at an early 
stage. Then, prolonged sensitization processes may underlie the 
coexistence of pain syndromes in patients with functional diseases, 
even after inflammation ceases. An animal study has indicated that 
inflammation or transient overexpression of NGF in one tissue 
triggers hypersensitivity in referral sites [75]. The peripheral stress 
mediator noradrenaline may also induce visceral hypersensitiv-
ity to colorectal distension in response to chronic stress through 
increasing the expression of NGF in the colon wall, thus sensitizing 
primary afferents in the absence of an inflammatory response [76].

Neuropathic pain is caused by metabolic, traumatic, viral or 
toxic lesions or dysfunction affecting the somatosensory system, 
thereby altering nociceptive signal processing. Immune cell prod-
ucts may play crucial roles, not only in inflammatory pain, but 
also in neuropathic pain caused by injury to peripheral nerves or 
the CNS [77]. Neuropathic pain, including postherpetic neural-
gia, is considered a maladaptive type of pain. The spontaneous 

and evoked types of pain in neuropathy have been frequently 
attributed to injured nociceptive afferents that become sensitized 
and hyperexcitable, or to low-frequency ectopic firing in residual 
‘uninjured’ nociceptors. A third alternative has also been pro-
posed: that pain is due, at least in part, to ectopic afferent dis-
charge generated in low-threshold, myelinated, rapidly conduct-
ing Ab touch afferents [78]. Postherpetic neuralgia is one of the 
most common conditions seen in pain clinics [79]. Intriguingly, a 
recent study described a patient with CIPA suffering from herpes 
zoster [80]. This patient, a 3‑year-old boy, had developed varicella 
at 2 months of age. Lesions of herpes zoster were characteristically 
confined to the trigeminal nerve-innervated maxillary region. 
Varicella-zoster virus (VZV) was identified by virus isolation. 
This patient has never complained of pain or itch sensation before 
or after herpes zoster, despite suffering severe herpetic skin lesions. 
Postherpetic neuralgia was not observed in this patient. It is of 
interest that VZV infects epidermal cells and causes herpes zoster 
in this patient, since patients with CIPA lack NGF-dependent 
primary afferents, as well as sympathetic postganglionic neu-
rons. Patients with CIPA have touch sensation and intact primary 
afferent neurons with large myelinated Ab-fibers in their skin. 
It is known that the VZV virus ascends the sensory nerve from 
the skin sensory nerve endings during primary infection, and 
migrates up the DRG, where it usually remains latent for the life-
time of the individual [79]. It is thus likely that VZV ascends the 
sensory nerves with Ab-fibers and migrates up the DRG, based on 
clinical case reports of CIPA [80]. This may indicate an important 
feature of the mechanism of VZV latent infection in the DRG and 
neuropathic pain syndromes, including postherpetic neuralgia. In 
most cases of herpes zoster, preferential loss of large myelinated 
fibers appears to occur, with or without postherpetic neuralgia [79]. 
Thus, NGF-dependent afferent neurons are required for the estab-
lishment of pain sensation, but probably not for latent infection 
by VZV and the development for herpes zoster.

Postherpetic pain and other types of neuropathic pain are char-
acterized by persistent pain following inflammation or nerve injury, 
and are evoked by stimuli that are normally perceived as innocuous. 
A small subset of primary sensory neurons with C-fibers may play 
a crucial role in the painful sensitivity to touch or pressure that fol-
lows injury or inflammation in animals [81]. These neurons respond 
to innocuous mechanical stimuli, such as light touch, rather than 
noxious stimuli. This suggests that a subset of primary sensory 
neurons with C-fibers can change from eliciting innocuous sen-
sation of light touch to evoking pain following inflammation or 
injury. Primary afferent neurons with C-fibers are NGF-dependent 
neurons, at least during the developmental stage. Thus, patients 
with CIPA lack NGF-dependent neurons and consequently all pain 
sensation, including injury-induced mechanical hypersensitivity. 

Itch
Itch is an uncomfortable sensation that causes a desire to scratch 
the skin, and is often associated with invasion of parasites or insect 
bites. Itch probably evolved as a defense mechanism against insects. 
Unlike pain, which elicits a withdrawal response, itch draws 
attention to a particular area of the skin and elicits scratching. It 
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may, thus, serve to remove insects and any stingers, eggs or other 
deposits they leave behind [9]. NGF-dependent primary afferent 
C-fibers and probably certain subtypes of Ad-fibers appear to be 
crucial for mediating various peripheral stimuli to the spinal cord 
and the brain, resulting in the symptoms of itching, although the 
roles of Ad-fibers in this are still poorly understood [10]. There is 
no universal peripheral itch mediator, with sets of disease-specific 
mediators existing instead [8]. In addition, numerous mediators 
of skin cells can activate and sensitize pruritic nerve endings, and 
can even modulate their growth.

Although itch and pain are different sensations tied to different 
behaviors, both are conveyed from the periphery to the spinal cord 
by NGF-dependent primary afferents. Histamine, released from 
tissue mast cells by tissue damage or microbial invasion, is a well-
recognized mediator of acute inflammation and a potent pruritic 
agent. Intradermal injection of histamine causes a strong sensation 
of itch in normal individuals. Patients with CIPA lack both pain 
and itch sensation, since they lack NGF-dependent primary affer-
ents. This is also demonstrated by a defect in histamine-mediated 
axon reflexes [33], as described above. 

There has long been debate concerning the basic mechanisms 
of itch and the interaction between pain and itch, raising an 
important conceptual problem [82]. A subpopulation of affer-
ent neurons with C-fibers were considered the peripheral ‘itch’ 
fibers, whereas activation of polymodal receptors, responding to 
a range of noxious stimulation, as well as to non-noxious stimu-
lation, could generate the perception of itch [82]. The question 
remains whether there are separate neuronal pathways for itch 
and pain [15,82]. It is known that lesions of the spinothalamic 
tract pathways (STT) always impair both itch and pain sensa-
tions [83]. A specialized class of dorsal horn neurons projecting 
to the thalamus has been demonstrated to respond strongly to 
histamine administered to the skin by iontophoresis [83]. The 
presence of a small subset of histamine-responsive neurons in 
the lamina I spinothalamic tract neurons has been reported in 
cats, arguing for a ‘labeled line’ for itch [83,84]. Intriguingly, in 
atopic dermatitis (AD), one of the most common pruritic dis-
eases, itch can often be induced mechanically, in contrast to 
the mechanoinsensitivity of the histamine-sensitive C-fibers [15]. 
Recent studies in primates, however, have found that all hista-
mine-sensitive STT neurons are responsive to noxious stimuli, 
arguing against a labeled line for itch [85,86]. Consistent with 
these findings, a further study reported that primary afferent 
neurons expressing capsaicin receptor (TRPV1) are equipped 
with multiple signaling mechanisms that respond to different 
pruritogens [87]. Intriguingly, itch sensation can be elicited by 
dermal application of the algogen capsaicin [88]. To dissociate the 
pruritic and nociceptive sensory effects of chemical activation of 
sensory neurons, chemicals were applied in punctiform fashion 
to the skin, using individual heat-inactivated cowhage spicules 
treated with various concentrations of capsaicin or histamine. 
Spicules, containing capsaicin or histamine, produced similar 
qualities and magnitudes of sensation. The similar pruritic and 
sensory effects of punctate application of each chemical sug-
gest the function of a common subset of peripheral nerve fibers 

or common central mechanisms that result in similar qualities 
of sensation. These studies have linked itch research and pain 
research on a basic mechanistic level.

Other recent studies have suggested that gastrin-releasing 
peptide receptor (GRPR) is an itch-specific protein in the spinal 
cord [89]. A subsequent study by the same group on GRPR has 
also suggested that the neurons expressing GRPR in the spinal 
cord neuron differ from the STT neurons that have been the 
focus of the debate on a ‘labeled line’ for itch [90]. These GRPR-
expressing neurons probably represent a previously unrecognized 
subpopulation of lamina I neurons that confer specificity of itch 
at the spinal level. However, it is uncertain whether these neurons 
are projection neurons or interneurons. Detailed understanding 
of the anatomic basis of these neurons and their relationship with 
STT neurons will require further study.

It has not been possible to morphologically differentiate fibers 
specific for pain from those specific for itch in normal indi-
viduals  [12,15]. It remains unknown whether there are separate 
neural pathways specific for pain and itch in normal individu-
als. However, molecular and physiological studies of patients 
with CIPA suggest that NGF-dependent primary afferents are 
responsible for mediating pain and itch sensations.

Neural sensitization in pain & itch
It is a common experience that itch sensation can be reduced by a 
painful sensation caused by scratching [7]. Cold stimulation also 
reduces itch sensation, although warming the skin often leads 
to exacerbation of itch. Itch and pain thus appear to share many 
receptors and processing centers, although they remain two dis-
tinct sensations [7,11]. There is a broad overlap between pain- and 
itch-related peripheral mediators and/or receptors, suggesting sim-
ilar mechanisms for neuronal sensitization in the peripheral ner-
vous system and CNS [7,10,12,15]. NGF probably alters the response 
properties of itch-signaling neurons, as well as pain-signaling neu-
rons [7]. Acute peripheral sensitization processes involving NGF 
and inflammation participate in pain and itch. In addition, NGF 
probably contributes to central sensitization processes and plays 
pivotal roles, particularly in the context of neuropathic pain [91–93].

Pain and itch are uncomfortable sensory and emotional expe-
riences, often provoking changes in activation of the autonomic 
sympathetic nervous system. Pain can also be seen as a homeostatic 
emotion causing adverse behavioral responses, such as autonomic 
reflexes, motor responses and psychosomatic reflexions. The acti-
vation of NGF-dependent primary afferents and postganglionic 
sympathetic neurons of the peripheral nervous system during an 
immune response might be aimed at localizing the inflamma-
tory response through induction of neutrophil accumulation and 
stimulation of more specific immune responses [68]. Axon reflexes 
mediated by NGF-dependent primary afferents probably play 
important roles in these local responses. By contrast, uncomfort-
able emotional memories associated with various experiences of 
pain and itch are probably useful in inducing preventive behaviors 
against potential injury or tissue damage, and thus contribute to 
homeostatic processes and the survival of the organism. Although 
inflammation is a local, protective response to microbial invasion 
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or injury, it must be fine-tuned and regulated precisely, since 
deficiencies in or excessive inflammatory responses cause morbid-
ity and shorten lifespan [67,68]. By the same token, pain and itch 
must be tuned and regulated appropriately. Deficiency of these 
sensations may otherwise cause morbidity and shorten lifespan, 
as observed in patients with CIPA, while excess sensation of this 
type can cause maladaptive morbidities, such as dysfunctional or 
neuropathic pain and chronic itch.

It is known that acute stress and chronic psychoemotional 
stress can trigger or enhance pruritus [14,62,94]. Stress responses 
are known to be learned, to involve cortical centers and to acti-
vate the HPA axis [14,69]. Psychoemotional and physical stress 
can induce itchiness of the skin, exacerbate inflammatory skin 
diseases and inhibit would healing [95]. Plasticity of the cutaneous 
peptidergic innervation, in response to stress exposure, appears 
to be a prerequisite for the enhancement of cutaneous inflam-
matory responses observed in individuals with stress [95]. The 
importance of the roles of learning processes in the development 
of both chronic pain and chronic itch has also been recognized, 
and the experience of increased pain and itch upon stressful events 
also leads to conditioning of pain and itch, thereby aggravating 
and perpetuating stress-induced pain and itch [14]. 

NGF & inflammation
NGF is a well-known neurotrophic factor that regulates the long-
term survival, growth and differentiation of function of both 
nociceptive neurons (or more broadly NGF-dependent primary 
afferents) and sympathetic postganglionic neurons. NGF is thus 
essential for the establishment of neural pathways for pain and itch, 
as well as for homeostatic regulation of the body via the sympa-
thetic nervous system in the developing animal. NGF-dependent 
primary afferents and sympathetic postganglionic neurons influ-
ence inflammation by secreting pro-inflammatory or anti-inflam-
matory substances into sites of inflammation [14,61–69]. These NGF-
dependent neurons play critical roles in neurogenic inflammation. 
Indeed, axon reflexes are absent in patients with CIPA, as described 
above. This suggests that neurogenic inflammation does not occur 
without NGF-dependent neurons.

Expression of NGF is high in injured and inflamed tissue, and 
activation of the NGF receptor tyrosine kinase TrkA on noci-
ceptive neurons triggers and potentiates pain signaling through 
multiple mechanisms [96–98]. NGF is conveyed via retrograde 
axonal transport to the DRG; where gene expression of neu-
ropeptides, receptor molecules, such as the vanilloid receptors 
(TRPV1), and brain-derived neurotrophic factor (BDNF) is 
increased [70,98–101]. Numerous studies have also demonstrated 
that axonal ion channels contribute to pain, and that NGF alters 
their local expression [102–107]. 

NGF also initiates nerve fiber sprouting, and thus alters the 
morphology of sensory neurons in localized pain and hypersen-
sitivity. In addition, inflammation induces the activation of the 
sympathetic nervous system [108,109]. The sympathetic nervous 
system is involved in various protective reactions of the body 
that are associated with pain, but not in the generation of pain 
by activation or sensitization of afferent neurons. However, this 

system may also be involved in the generation of pain in certain 
pathological conditions [108]. It is known that NGF increases sym-
pathetic fiber density and peripheral innervation [110,111], enhances 
sympathetic sodium currents [112] independently of their activa-
tion/inactivation kinetics [113], maintains sympathetic calcium 
currents and enhances frequency discharges of action poten-
tials by decreasing spike latency/inter-spike intervals [114], and 
decreases sympathetic potassium current amplitude [115]. Thus, 
the cross-talk between autonomic sympathetic nerves and NGF 
may contribute to the generation of pain in certain pathological 
conditions. Patients with CIPA probably do not exhibit this type 
of cross-talk since they lack sympathetic postganglionic neurons.

NGF is now known to influence the main mediators of neuro-
genic inflammation through direct or indirect biologic activities 
in both the nervous and immune systems [18,73,99,116]. The direct 
effects of NGF on TrkA-expressing neurons involves both periph-
eral sensitization and the induction of altered central pain process-
ing, while its indirect effects involve immune cells, including mast 
cells and neutrophils (or eosinophils in allergic inflammation), as 
well as sympathetic postganglionic neurons. 

Cross-talk between NGF and a proinflammatory cytokine, such 
as TNF-a, has been also proposed, contributing to intercellu-
lar positive-feedback loops of these factors among neural cells, 
glial cells and immune cells [117]. NGF is produced continuously 
during allergic inflammation, and thus might act as a long-term 
modulator, amplifying inflammatory signals between the nervous 
and immune systems during neurogenic inflammation [73,116]. 
NGF can modulate NGF-dependent primary afferents by stimu-
lating the production of neuromediators or neuropeptides, espe-
cially SP and CGRP [7,73]. NGF-dependent primary afferents and 
sympathetic postganglionic neurons release neuromediators and 
activate specific receptors on many target cells in the skin or lung, 
and thereby modulate inflammation, cell growth and immune 
responses [10,73]. Neuropeptides such as SP are also capable of 
activating keratinocytes, resulting in production of a number of 
proinflammatory cytokines [10]. Thus, neuropeptides released by 
NGF-dependent primary afferents modulate a broad range of 
functional responses of immune cells, including lymphocytes, 
eosinophils, mast cells and macrophages, as well as keratinocytes, 
leading to activation and differentiation of these cells (Figure 1).

The biological activities of NGF in inflammation described above 
only include some of its effects. Over the past decade, considerable 
evidence has accumulated in both humans and animals that NGF 
is a peripheral pain mediator, particularly in inflammatory pain 
states (for reviews, see [18,99]). NGF is upregulated in a wide variety 
of inflammatory conditions, and NGF-neutralizing molecules are 
effective analgesic agents in many models of persistent pain, as 
described below. NGF thus plays critical roles as a neurotrophic 
factor during development, but also as a significant mediator and 
modulator of pain, itch and inflammation throughout life. 

NGF & diseases
NGF functions as a mediator of inflammation in various diseases 
of the skin, such as AD (for review, see [10]), in those of the air-
ways, such as asthma and rhinitis (for reviews, see [116,118,119]) and 
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those of the musculoskeletal system, such as various inflammatory 
and degenerative diseases, including autoimmune and rheumatic 
diseases (for review, see [120]). 

Atopic dermatitis
Atopic dermatitis is a chronic skin disease characterized by symp-
toms such as red scaly eczema and a strong itching sensation. 
Pruritus is the most common and least tolerated symptom of AD, 
and even partial reduction of pruritus can result in significant 
improvement in quality of life for patients [121]. NGF plays an 
important role in regulating the activity of immune cells in nor-
mal skin and in a number of pathological conditions, including 
wound healing, inflammation, psoriasis and AD, as well as in 
allergic, autoimmune and stress-induced skin responses [122,123]. 
Recent studies have suggested that NGF may play a role in the 
pathophysiology of AD [10]. Expression of NGF is increased in 
the skin of patients with AD [124–127], with animal studies report-
ing similar findings [128–134]. In addition, studies using electron 
microscopy have revealed increased intradermal fiber density 
in patients with AD [135,136]. Skin inflammation modulates 
neuronal plasticity and regeneration via a cytokine/NGF axis. 
Alterations of NGF signaling, for example, by cytokines, may 
account for many inflammation-associated changes in cutaneous 
innervation [95]. Potent proinflammatory cytokines can upregu-
late the cutaneous expression of NGF, and may thus contribute 
to a vicious cycle of proliferative and proinflammatory events 
that maintain and promote chronic inflammatory diseases. NGF 
plays an important role in the neuroimmune network regulat-
ing allergic skin responses [122]. NGF expression thus modulates 
interactions of epidermal keratinocytes with cutaneous nerves, 
as well as mast cells in the skin, contributing to vicious cycles 
that amplify allergic skin inflammation [73].

Airway inflammatory diseases
NGF may participate in airway inflammation, alterations 
in bronchial responsiveness, and airway remodeling, which 
are all important features of allergic rhinitis [137–143] and 
asthma  [96,118,119]. Airway hyper-responsiveness (AHR) and 
inflammation are essential clinical features of allergic asthma, 
and contribute strongly to the morbidity of this disease. 
Following irritation, activation of sensory airway nerves occurs 
and triggers an axonal response that acts as an immediate pro-
tective mucosal defense mechanism, resulting in coughing and 
sneezing [116]. Coughing, sneezing and other avoidance mecha-
nisms clear the upper and lower airways of offending agents. 
Changes in airway sensory innervation are under the control of 
inflammatory mediators released during allergic inflammation, 
and neurotrophin expression is intensively upregulated in the 
inflamed lung [116]. NGF increases the contents of neuropep-
tides in sensory nerves. In vivo studies in models of asthma in 
the guinea pig and mouse have also demonstrated that NGF 
may play a role in AHR through activation of the TrkA recep-
tor [144–147]. Animal studies have demonstrated that NGF also 
increases the excitability of lower airway parasympathetic neu-
rons in diseased or inflamed lower airways [148,149]. NGF may 

be involved in amplification of the effects of axon reflexes in the 
airways, enhancing neurogenic inflammation and contributing 
to the pathophysiology of bronchial asthma [119]. Thus, neuro-
trophins contribute to AHR through increasing the activity of 
the sensory airway nerves [116].

Recent studies suggest that NGF has important effects on 
neuronal activity in airways and sensory innervation, and acts 
as a growth factor for inflammatory cells, including mast cells, 
T cells and eosinophils, in the bronchial mucosa [73,118,119,150–152]. 
In addition, NGF may act on structural cells and, therefore, par-
ticipate in the bronchial remodeling that occurs in the airways of 
patients suffering from allergic diseases, particularly asthma [118]. 
Potential cellular sources of increased neurotrophin production 
are resident lung cells and invading immune cells [116]. Fibroblasts 
and airway smooth muscle cells may also be additional sources 
of NGF during inf lammatory activation  [116,118,119,153,154]. 
Furthermore, the NGF-TrkA system might be involved in com-
mon respiratory infections, such as that by respiratory syncytial 
virus [119,155,156]. Changes in NGF expression in the respiratory 
tract may represent an important link between viral infection 
in early life and childhood asthma [157]. Together, these find-
ings suggest that NGF plays roles in the inflammation, AHR 
and remodeling processes observed in airway inflammatory 
diseases [73,116,118,119]. 

Rheumatic diseases
Inflammatory and degenerative diseases of the joints are major 
causes of chronic pain [158]. In younger patients, inflamma-
tory diseases in particular, such as rheumatoid arthritis, are 
causes of joint pain, whereas elder individuals mainly suffer 
from pain due to osteoarthritis [158,159]. Autoimmune diseases 
and a variety of degenerative rheumatic disorders are character-
ized by chronic inflammatory events [158,160,161]. The joints are 
equipped with large numbers of Ad- and C-fibers (i.e., NGF-
dependent primary afferents) able to encode painful stimuli. 
Sympathetic postganglionic neurons also innervate the joint 
capsule and synovium. The nervous system is not just a passive 
sensor of painful processes, and instead exhibits interaction 
with non-neuronal events in inflamed joints [161]. Inflammation, 
whether primary/autoimmune or secondary/degenerative, 
leads to peripheral sensitization and stimulation, which may 
in turn lead to central sensitization, neurogenic amplification 
of inflammatory responses and activation of the neuroendocrine 
axis [160]. Proinflammatory cytokines, including TNF-a, play 
important roles in rheumatoid arthritis. Their antagonists have 
been introduced as new therapeutic agents for patients with 
rheumatoid arthritis.

NGF is overexpressed in many inflammatory and degenerative 
rheumatic diseases. NGF concentrations are increased in body 
fluids and tissues derived from patients with these diseases, and 
correlate with the extent of inflammation and/or clinical activ-
ity [120,162–168]. Several clinical trials of anti-NGF treatments have 
already been conducted in pain diseases, as described below. The 
NGF-TrkA system might thus be a useful target in the treatment 
of various rheumatic diseases.
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Expert commentary
NGF acts as an inflammatory mediator, in addition to exhibit-
ing neurotrophic effects. The NGF-TrkA system, acting on the 
nervous, immune and endocrine systems, might play critical roles 
in maintaining homeostasis in the body. Complete loss of the 
effects of NGF acting through TrkA receptors can be detrimen-
tal to the survival of the organism, as exemplified by the clini-
cal phenotypes of patients with CIPA. However, various chronic 
inflammatory diseases may cause hyperactivity of the NGF-TrkA 
system, contributing to vicious cycles of pain or itch associated 
with neurogenic inflammation. Thus, NGF antagonists may offer 
novel therapeutic approaches to inflammatory diseases associated 
with chronic pain and itch.

NGF-dependent neurons are involved in reciprocal communi-
cation between the brain and the body, modulating inflamma-
tion, immune responses during host defenses, pain and pruritus 
(Figure 1). This reciprocal communication between the body cells 
and the brain mediates homeostatic regulation in physiological, 
as well as pathophysiological, conditions. The NGF-TrkA system 
might be an important participant in crucial neurological path-
ways and mediators, provoking adaptive or maladaptive responses 
in the body. Hopefully, integrated understanding of the neuroim-
munoendocrine system will lead to new innovative approaches to 
the treatment of many diseases associated with chronic pain, as 
well as chronic itch.

NGF is now considered an inflammatory mediator that sensitizes 
and regulates gene expression in NGF-dependent neurons [18]. NGF 
is upregulated in a variety of inflammatory conditions, including 
autoimmune and rheumatic diseases [10,73,116,118–120]. NGF levels 
are elevated in injury, inflammation and chronic pain states [98], 
and administration of NGF provokes pain and hyperalgesia in 
humans [169]. Accordingly, various approaches to the antagonism 
of NGF have been developed in animal models. These include 
NGF-capturing agents, antagonists at the NGF-TrkA binding site 
and antagonists of TrkA function to inhibit TrkA signaling (for 
review, see [98,170,171]). These selective antagonists of the NGF-TrkA 
system are expected to be highly effective therapeutically in many 
pain states due to their distinct mechanisms of action [172–174]. 
NGF-neutralizing molecules are effective analgesic agents in many 
models of persistent pain [96,174–183]. Analysis of NGF antagonists 
improves understanding of NGF-induced inflammation and may 
yield many new therapeutic strategies. Targeting NGF is thus a 
promising candidate in the search for novel therapeutics [98,170–172]. 

Recently, many analgesics have been developed based on the 
biological mechanisms of various types of pain. In addition, new 
drugs against itch have been developed based on the biologi-
cal mechanisms of itch [7]. Molecular and biological analyses of 
various pain syndromes and itch states, as well as the pathology 
of CIPA, have suggested that the NGF-TrkA system might be 
involved in both maladaptive pain and chronic itch. Indeed, 
clinical investigations have demonstrated that NGF and SP 
levels are increased in the plasma of patients with AD or pru-
rigo nodularis skin [184], and that these may be useful markers 
of disease activity [185]. Indeed, a novel antipruritic strategy to 
target the neurokinin receptor 1 (NKR1), a receptor for SP, 

has been recently reported to show promising results in patients 
with treatment-refractory pruritus [186]. The use of this NKR1 
antagonist, aprepitant, may present a novel, effective treatment 
strategy based on the pathophysiology of chronic pruritus. NGF 
may play important roles in the pathogenesis of AD-like lesions 
in the NC/Nga mouse, a model of AD [187]. In these mice, nerve 
fibers were found to be significantly increased in the epidermis of 
skin with lesions, and the NGF content of serum and skin was 
significantly elevated. Anti-NGF antibodies significantly inhib-
ited the development of skin lesions and epidermal innervation. 
These findings suggest that inhibiting the physiological effects of 
NGF, or suppressing increase in NGF production, may provide 
a new therapeutic approach for amelioration of the symptoms 
of AD [188]. 

Considering the broad overlap between pain- and itch-related 
peripheral mediators and/or receptors, and the similarity in their 
mechanisms of neuronal sensitization in the peripheral nervous 
system and CNS, combinations of centrally acting drugs coun-
teracting sensitization and topically acting drugs counteracting 
inflammation appear to be promising in ameliorating pain and 
itch [7,11,12]. Combined approaches that target both the peripheral 
production of inflammation-induced pain or itch signals and the 
peripherally-incited vicious cycles that perpetuate pain or itch 
and cause spinal and central sensitization are needed. Thus, the 
combination of peripherally active anti-inflammatory agents with 
drugs that counteract chronic central sensitization is a particularly 
sensible approach beyond the use of NSAIDs, opiates and anti-
histamines. These considerations together encourage the develop-
ment and testing of selective inhibitors of the NGF-TrkA system 
for human diseases associated with pain, itch and inflammation. 
Thus, naturally occurring TrkA missense mutations with loss of 
function provide considerable insight into structure–function 
relationships and aid in the development of drugs that target the 
NGF-TrkA system [32–35,37–41]. 

With targeting the molecular mechanisms of NGF-TrkA signal 
transduction, may come the hope of developing novel approaches 
to the treatment of a variety of persistent pain and itch syndromes. 
However, clinical application of inhibitors of the NGF-TrkA sys-
tem might have a range of untoward effects, given the function of 
NGF-dependent neurons in several brain regions observed in ani-
mal studies [35,189,190]. In humans, growing evidence suggests that 
an imbalance in the expression of NGF and TrkA might be one 
of the crucial factors underlying dysfunction of cholinergic basal 
forebrain neurons in Alzheimer’s disease [96,191]. Indeed, signifi-
cant downregulation of TrkA expression during the development 
of Alzheimer’s disease has been demonstrated [192]. In addition, 
a Phase I clinical trial has been undertaken to examine the util-
ity of ex vivo NGF gene therapy for Alzheimer’s disease, which 
has shown promise in treatment and warrants additional clinical 
trials [193]. However, it is unclear whether exposure of the brain 
to a NGF-TrkA inhibitor will give rise to significant side effects 
in adults. Accordingly, drugs that inhibit signal transduction in 
the NGF-TrkA system might affect cognitive functions when 
delivered to target neurons in the brain. These effects may limit 
the utility of such drugs in the treatment of severe, but nonlethal, 
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chronic diseases associated with pain and itch. Thus, identifica-
tion of specific inhibitors that act only on the peripheral nervous 
system may be desirable. However, if NGF-dependent neurons 
in the brain prove to be involved in mechanisms of chronic pain 
and itch, they could be targets in developing an unprecedented 
approach to treatment of chronic pain and itch. They might also 
be targets for therapeutic interventions in human diseases associ-
ated with emotional disturbances, which are often associated with 
chronic pain and itch. 

The vanilloid receptor TRPV1 is a central integrator molecule 
in the pain and itch pathways [8]. TRPVI has been identified 
as a molecular target for the treatment of pain associated with 
inflammatory diseases and cancer. TRPV1 can be activated, not 
only by capsaicin, but also by heat, acid and various lipids [101]. 
Hence, TRPV1 antagonists have been considered for therapeu-
tic evaluation in such diseases. Preclinical studies suggest that 
TRPV1 is an important component of several diseases, such as 
pain-related and airway diseases, playing roles in sensitization 
related to both pain and cough [194]. In addition, several synthetic 
antagonists of the TRPV1 channel have been developed and are 
currently under investigation. Unfortunately, one such molecule 
has caused marked hyperthermia in humans, preventing further 
development of it [195]. TRPV1 antagonists may also induce com-
plete insensitivity to heat-related pain, and may thus be seriously 
harmful, since the mechanism for prevention of burns has been 
effectively eliminated. This suggests that TRPV1 regulates vaso-
motor tone and metabolic heat production, and may therefore 
play a pivotal role as a molecular regulator of body tempera-
ture in humans. TRPV1 mRNA is highly expressed in NGF-
dependent primary afferents that are also considered homeostatic 
afferent neurons. NGF increases expression of the TRPV1 gene 
and induces a long-lasting increase in the sensitivity of TRPV1 
receptor when administered to somatic tissues [194,196]. NGF 
might be involved in thermoregulation by altering the sensitiv-
ity of other TRP channel proteins, such as TRPV2, expressed on 
NGF-dependent primary afferent neurons. Interestingly, warmth 
is detected through the activation of other TRP channels, such 
as TRPV3 and TRPV4, expressed in skin keratinocytes [197,198]. 
Accordingly, keratinocytes might play an active role in thermo-
sensation by signaling thermal information to the sensory nerves. 
NGF can be released from keratinocytes and has been suggested 
to be a potential paracrine warmth signal [198]. Cool temperatures 
are primarily sensed by activation of TRPM8, and noxious cold 
can activate TRPA1 channels in a subset of TRPV1-expressing 
fibers [197,198]. 

One of the characteristic symptoms in patients with CIPA is 
recurrent fever, associated with anhidrosis. However, hypother-
mia is also observed in patients with CIPA in cold environmental 
temperatures. In addition, piloerection or ‘goose bumps’ does not 
occur in response to cold stimuli in these patients. NGF also acts on 
the sympathetic postganglionic neurons that regulate sweat glands, 
piloerector muscles and blood vessels, playing important roles in 
thermoregulation. It may thus be necessary to consider alteration 
of thermosensation, and consequent alteration of thermoregulation, 
when targeting the NGF-TrkA system.

According to animal studies, embryonic afferent neurons 
expressing TrkA receptors exhibit two distinct pathways of dif-
ferentiation that lead to the formation of two classes of neurons 
– peptidergic and nonpeptidergic. The latter class switches off 
TrkA and expresses Ret, another receptor tyrosine kinase for glial 
cell-derived neurotrophic factor (GDNF) [199]. Nonpeptidergic 
neurons expressing Ret become GDNF-dependent neurons and 
can be identified by staining for isolectin-B4. By contrast, pep-
tidergic neurons remain dependent on NGF and its TrkA recep-
tor. A subset of primary sensory neurons with C-fibers that play 
a crucial role in the sensitivity to touch or pressure that follows 
injury or inflammation in animals does not appear to overlap with 
afferent neurons that bind isolectin-B4 [81]. Interestingly, patients 
with CIPA probably lack all of these afferent neurons. Recent 
studies have suggested that GDNF-dependent neurons modu-
late nociception [200–202]. It remains to be determined whether 
nonpeptidergic GDNF-dependent neurons exhibit any response 
to approaches targeting the NGF-TrkA system after switching off 
TrkA. Further studies are needed to answer this question. 

Five-year view
NGF is a well known survival factor for NGF-dependent primary 
afferent neurons and sympathetic postganglionic neurons in the 
developing nervous system. In adults, NGF acts not only as an 
important neurotrophic factor for these NGF-dependent neurons, 
but also as a crucial inflammatory mediator. During inflamma-
tion, various tissues and immune cells produce and release NGF, 
and NGF delivers activating and survival signals, through TrkA 
receptors, to effector cells involved or associated with inflam-
mation. Activating NGF signals are also mediated through p75 
receptors [203]. NGF plays a crucial role in the generation of pain 
and hyperalgesia in several acute pain and chronic pain states. 
NGF also plays important roles in the neuroimmune network 
involved in the establishment of sensitization to itch in allergic 
skin diseases and AHR in airway diseases. NGF may thus con-
tribute to a vicious cycle of proliferative and pro-inflammatory 
events that maintain and promote chronic inflammatory diseases, 
including allergic airway diseases, such as asthma and rhinitis, 
AD and various rheumatic diseases. More comprehensive inves-
tigation of the complex biological functions of the NGF-TrkA 
system might yield new opportunities for the development of 
novel strategies of therapeutic intervention.

Since there are many mediators and mechanisms that are poten-
tially algogenic or pruritic in inflamed tissues or skin, many could 
provoke pain or itch in sensitized patients. Similar mediators and 
mechanisms probably contribute to AHR in allergic airway dis-
eases. Thus, therapeutic approaches that only target a single pain 
or pruritic mediator do not appear to be promising for patients 
with chronic pain or itch or AHR. The main therapeutic implica-
tion of this is, in fact, that combinations of centrally acting drugs 
counteracting sensitization and topically acting drugs counteract-
ing inflammation are more promising for ameliorating pain, itch 
and AHR. The NGF-TrkA system is probably not a direct cause of 
each disease involved, but may contribute to vicious cycles shared 
by many chronic inflammatory diseases or states. Consequently, 
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the NGF-TrkA system is a promising target for the treatment 
of various diseases associated with chronic inflammation, pain 
and itch. Indeed, several pharmaceutical companies have active 
drug-discovery and development programs based on a variety of 
approaches to antagonize NGF, including NGF ‘capture’, block-
ing the binding of NGF to TrkA and inhibiting TrkA signaling. 
Therapeutic approaches that target the NGF-TrkA system may 
provide a unique means of exploring new drugs against various 
inflammatory diseases associated with pain, itch or AHR, beyond 
those currently available.
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