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Football and team handball 
training postpone cellular aging 
in women
Marie Hagman1, Bjørn Fristrup1,2, Rémi Michelin3, Peter Krustrup  1,4,5,6,8* & 
Muhammad Asghar3,7,8

Several hallmarks of aging have been identified and examined separately in previous exercise studies. 
For the first time, this study investigates the effect of lifelong regular exercise in humans on two of 
the central aging hallmarks combined. This cross-sectional study involved 129 healthy, non-smoking 
women, including young elite football players (YF, n = 29), young untrained controls (YC, n = 30), 
elderly team handball players (EH, n = 35) and elderly untrained controls (EC, n = 35). From a resting 
blood sample, mononuclear cells (MNCs) were isolated and sorted into monocytes and lymphocytes. 
Telomere length, mitochondrial (mtDNA) copy number and key regulators of mitochondrial biogenesis 
and function (PGC-1α and PGC-1β expression) were measured using quantitative polymerase chain 
reaction (qPCR). Overall, young women showed significantly longer telomeres and higher PGC-1α 
and PGC-1β expression, but lower mtDNA copy number compared to elderly subjects. A multivariate 
analysis showed that YF had 22–24% longer telomeres in lymphocytes and MNCs compared to YC. In 
addition, YF showed 19–20% higher mtDNA copy number in lymphocytes and MNCs compared to YC. 
The two young groups did not differ in PGC-1α and PGC-1β expression. EH showed 14% lower mtDNA 
copy number in lymphocytes compared to EC, but 3.4-fold higher lymphocyte PGC-1α expression 
compared to EC. In MNCs, EH also showed 1.4–1.6-fold higher PGC-1α and PGC-1β expression. The 
two elderly groups did not differ in telomere length. Elite football training and lifelong team handball 
training are associated with anti-aging mechanisms in leukocytes in women, including maintenance of 
telomere length and superior mitochondrial characteristics.

In a time of consistent and considerable increase in global life expectancy1, healthy aging and improved quality 
of life in old age are a major challenge. Aging is defined as time-dependent deterioration of the body with the 
passage of time that increase vulnerability to death. One of the central hallmarks of aging is telomere attrition2. 
Telomeres, which are specific nucleoprotein structures capping both ends of each chromosome, function to 
maintain genome stability and preserve genetic information. As we age, human telomeres gradually shorten 
due to successive cell division and incomplete replication. When telomeres reach a critical length, the cell can 
no longer divide and become senescent3. Accelerated telomere attrition has been proposed as a risk factor for 
several human pathologies and age-related diseases, such as chronic inflammation, infection, dementia, diabetes, 
cardiovascular diseases (CVD) and cancer, and for mortality in general4,5. By contrast, longer telomeres have been 
shown to be positively associated with more years of healthy living6. Another important mechanism for extending 
both health and lifespan is maintenance of mitochondrial function. Indeed, decreased mitochondrial function, 
which results in impaired adenosine triphosphate (ATP) generation and increased levels of reactive oxygen spe-
cies (ROS), has been implicated in driving the aging process7. It has been found that telomere shortening and 
associated DNA damage promote mitochondrial dysfunction, diminished oxidative defence and compromised 
energy-generating processes8. Thus, regulation of telomeres and mitochondria may be directly linked in the 
process of aging and in age-associated disease development.
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Previous studies show that engagement in physical activity is associated with healthy aging and decreased 
risk of chronic diseases9, whereas the relationship between telomere length and level of physical training is still 
a matter of some debate. A systematic review from 2020 showed that better cardiorespiratory fitness or a large 
cardiorespiratory training load are associated with longer telomeres in older healthy humans, but not in young 
subjects10. This observation is in line with the hypothesis that telomere length is stable in young age, but begins to 
decline in older adulthood11. Inconsistent findings regarding the role of exercise in telomere shortening may also 
be related to exercise modality. Werner et al.12 have recently shown that 6 months of either endurance training or 
interval training, but not resistance training, can increase telomere length in previously inactive adults. Aerobic 
exercise training is also considered the gold standard for improving mitochondrial biogenesis in all age groups. 
In older adults, aerobe exercise training may partially reverse mitochondrial dysfunction by increasing the mito-
chondrial (mtDNA) copy number and volume, mitochondrial transcript and protein expression, ATP synthesis 
and oxidative enzyme function, while the effect of resistance training on mitochondrial function is less certain13.

The type of exercise also appears to have a high impact on the motivation to maintain lifelong attendance. 
Being part of a community and developing relationships are two of the main reasons why older adults keep 
participating in sports14. Team sports, such as football and team handball, are characterised by an important 
social factor, while combining endurance, interval and resistance training in one activity15,16. Hence, in a global 
strategy to increase physical activity, team sports may offer unique qualities. Whereas the topic of “Football for 
Health” has received much attention, with more than 150 scientific publications during the last 15 years17, most 
research studies within the field of team handball have focused on injuries and performance in elite players. 
However, the concept of team handball training as a health-promoting activity has slowly gained interest within 
the last couple of years. Indeed, positive cardiovascular, skeletal and muscular adaptations have recently been 
observed following a short period of recreational team handball training18,19. To the best of our knowledge, no 
studies have investigated the potential cellular anti-aging effects of either team handball or elite football train-
ing in women. Thus, the aim of the present cross-sectional study was to examine telomere length, mtDNA copy 
number and key regulators of mitochondrial biogenesis and function (PGC-1α and PGC-1β) in elderly female 
team handball players and young female elite football players in comparison with age-matched untrained women.

Results
Telomere length.  In total, 129 subjects were included in all the analyses. Overall, telomere length was 
negatively correlated with age in all cell types, including lymphocytes (r2 = 0.26, p < 0.001), monocytes (r2 = 0.23, 
p < 0.001) and MNCs (r2 = 0.28, p < 0.001), with young subjects showing 44–54% longer telomeres than elderly 
subjects depending on the cell type (Fig. 1A). Our multivariate analysis corrected for age showed that young 
football players (YF) had 24% longer telomeres in lymphocytes compared to young controls (YC) (5.67 ± 0.45 
vs 4.59 ± 0.24 kb, p = 0.016) and 22% longer telomeres in MNCs compared to YC (5.12 ± 0.33 vs 4.21 ± 0.19 kb, 
p = 0.010, Fig. 1B). The elderly team handball players (EH) and elderly controls (EC) did not differ in telomere 
length in any cell types (all p > 0.05, Fig. 1B, Suppl. Table S1).

Mitochondrial copy number and PGC‑1α and PGC‑1β expression.  Overall, the mtDNA copy num-
ber was positively correlated with age in all cell types (lymphocytes: r2 = 0.07, p = 0.002; monocytes: r2 = 0.06, 
p = 0.007; MNCs: r2 = 0.05, p = 0.014), with elderly participants showing a 16–23% higher mtDNA copy num-
ber than young participants depending on the cell type (Fig. 1C). On the other hand, PGC-1α and PGC-1β 
expression was negatively correlated with age in lymphocytes (PGC-1α: r2 = 0.22, p < 0.001; PGC-1β: r2 = 0.17, 
p < 0.001), monocytes (PGC-1α: r2 = 0.22, p < 0.001; PGC-1β: r2 = 0.22, p < 0.001) and MNCs (PGC-1α: r2 = 0.20, 
p < 0.001; PGC-1β: r2 = 0.04, p = 0.028), with young participants showing a 1.2–4.0-fold higher genes expression 
compared to elderly participants depending on the cell type (Fig. 2A,C).

Comparison of the two young groups using multivariate analysis showed 19% higher lymphocyte mtDNA 
copy number in YF compared to YC (853 ± 39 vs 715 ± 36, p = 0.022) as well as 20% higher MNC mtDNA copy 
number in YF compared to YC (962 ± 49 vs 801 ± 38, p = 0.012, Fig. 1D, Suppl. Table S2). The expression of 
PGC-1α and PGC-1β did not differ between YF and YC in any cell types (all p > 0.05, Fig. 2B,D, Suppl. Table S3).

In the multivariate analysis, EH showed a 14% lower mtDNA copy number in lymphocytes compared to EC 
(891 ± 48 vs 1032 ± 65, p = 0.045, Fig. 1D), while the PGC-1α expression was 3.4-fold higher in the lymphocytes 
in EH compared to EC (p = 0.012, Fig. 2B). In a univariate analysis, EH also showed 1.6-fold higher PGC-1α 
expression in MNCs compared to EC (p = 0.041, Fig. 2B) as well as 1.4-fold higher MNC PGC-1β expression 
compared to EC (p = 0.044, Fig. 2D). However, in the multivariate analysis the differences between EH and EC in 
PGC-1α and PGC-1β expression in MNCs only tended to be significant (PGC-1α: p = 0.085, PGC-1β: p = 0.089, 
Suppl. Table S3).

Body composition and VO2max.  Regular team handball and football training were associated with pro-
found improvements in body composition and VO2max (Table 1). Compared to YC, YF showed 22% lower total 
body fat percentage (p < 0.001), 32% lower android fat percentage (p < 0.001), 20% lower gynoid fat percentage 
(p < 0.001), 15% lower android/gynoid (A/G) fat ratio (p = 0.017), 5.8 kg higher total lean mass (p < 0.001), 2.3 kg 
higher leg lean mass (p < 0.001) and 27% higher VO2max (p < 0.001, Table 1). Compared to EC, EH showed 16% 
lower total body fat percentage (p < 0.001), 22% lower android fat percentage (p = 0.002), 14% lower gynoid fat 
percentage (p < 0.001), 3.6 kg higher total lean mass (p < 0.001), 1.2 kg higher leg lean mass (p = 0.005) and 31% 
higher VO2max (p < 0.001, Table 1). Total lean mass was even 3.0 kg higher in EH compared to young controls 
(YC) (p = 0.011).
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Correlations between cellular aging markers, exercise variables and body composition.  Spear-
man’s correlations were made for all variables in young and elderly women separately. Among the young women, 
the total amount of weekly exercise and the amount football training were positively correlated with telomere 
length in lymphocytes and MNCs, while VO2max was positively correlated with MNC PGC-1α expression (all 
p < 0.05, Fig.  3A, Suppl. Table  S4). Among the elderly women, VO2max, the total amount of weekly exercise 
and team handball training were all positively correlated with PGC-1α and PGC-1β expression in MNCs and 
PGC-1β expression in lymphocytes (all p < 0.05, Fig. 3B, Suppl. Table S5). By contrast, body fat percentage and 
A/G ratio were negatively correlated with PGC-1α and PGC-1β expression in MNCs and PGC-1β expression in 
lymphocytes in the elderly women (all p < 0.05, Fig. 3B, Suppl. Table S5). Finally, telomere length and mtDNA 
copy number were positively correlated in all cell types in the elderly participants only (all p < 0.05, Fig. 3B, 
Suppl. Table S5).

Discussion
This cross-sectional study is the first to investigate the effect of football and team handball training on telomere 
length and mitochondria in women. Furthermore, inclusion in the same study of two essential hallmarks of aging 
is quite unique and may lead to a broader understanding of the potential anti-aging effects of regular exercise. 
The main findings were that: (1) young elite football players (YF) had longer telomeres in both lymphocytes 

Figure 1.   Correlation of telomere length with age (A) and group (B) as well as mtDNA copy number according 
to age (C) and group (D) in young football players (YF), young controls (YC), elderly team handball players 
(EH) and elderly controls (EC). Lymph lymphocytes; MNC mononuclear cells; Mono monocytes.
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(24%) and MNCs (22%) compared to untrained young controls (YC) as well as a higher mtDNA copy number 
in lymphocytes (19%) and MNCs (20%) compared to YC; and (2), lifelong trained elderly team handball players 
(EH) had a lower mtDNA copy number in lymphocytes (14%) compared to untrained elderly controls (EC), but 
higher PGC-1α expression in lymphocytes (3.4-fold) compared to EC. PGC-1α and PGC-1β expression in MNCs 
was also higher (~ 1.5-fold) in EH compared to EC according to the univariate analysis.

Telomere length has been described as a ‘biological clock’, which can be used not only to establish the biologi-
cal age of an individual, but also to estimate the risk of age-related diseases4. Telomere attrition is a consequence 
of normal aging in humans, and it has been established that telomeres gradually shorten with age as a result of 
the end-replication problem, albeit large intraindividual variation exists2. The present study showed that young 
women on average had 1.55 kb longer telomeres compared to elderly women, which is comparable to differences 
in telomere length of 1.35 kb previously found between young (18–32 years) and older (55–72 years) sedentary 
adults of both sexes20. With an age difference of 41.4 years between the young and elderly groups in the present 
study, this difference in telomere length corresponds to a loss of ~ 37 bp per year of chronological age.

Our finding of reduced telomere shortening in young, but not elderly, ball game players contradict previous 
observations showing an effect of exercise on telomere length in adults above 50 years only. Surprisingly, the 
22–24% longer telomeres demonstrated in YF is comparable to beneficial adaptations observed in middle-aged 
or older athletes. Indeed, experienced ultra-distance runners aged ~ 45 years have shown 25% longer telomeres 

Figure 2.   Correlation of PGC-1α gene expression with age (A) and group (B) as well as PGC-1β gene 
expression according to age (C) and group (D) in young football players (YF), young controls (YC), elderly 
team handball players (EH) and elderly controls (EC). Lymph lymphocytes; MNC mononuclear cells; Mono 
monocytes. *p = 0.041 in univariate analysis; **p = 0.044 in univariate analysis.
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Table 1.   Group characteristics in young football players (YF), young controls (YC), elderly team handball 
players (EH) and elderly controls (EC). Group means ± SEM. #p < 0.05, ###p < 0.001, higher than YC; §p < 0.05, 
§§p < 0.01, §§§p < 0.001, higher than YF; **p < 0.01, ***p < 0.001, higher than EC; †p < 0.05, ††p < 0.01, †††p < 0.001 
higher than EH. A/G ratio android/gynoid fat ratio; MNC mononuclear cells; VO2max maximal oxygen 
consumption.

YF (n = 29) YC (n = 30) EH (n = 35) EC (n = 35)

Age (years) 22.5 ± 0.6 24.9 ± 0.4§§ 63.9 ± 0.7 66.1 ± 0.6†

Exercise/fitness

All exercise (h/week) 9.0 ± 0.4### 0.1 ± 0.0 4.7 ± 0.5*** 0.2 ± 0.1

Team handball/football (h/week) 6.7 ± 0.2 – 2.0 ± 0.1 –

VO2max (ml/min/kg) 45.3 ± 1.0### 35.7 ± 0.9 30.2 ± 1.2*** 23.1 ± 0.8

Body composition

Body mass (kg) 65.8 ± 1.6 64.3 ± 2.3 69.2 ± 1.5 70.5 ± 1.9

Total body fat (%) 26.3 ± 0.8 33.5 ± 1.1§§§ 34.4 ± 1.4 41.1 ± 1.0†††

Android fat (%) 20.8 ± 1.2 30.6 ± 2.0§§§ 34.6 ± 2.3 44.1 ± 1.8††

Gynoid fat (%) 30.7 ± 0.9 38.3 ± 0.9§§§ 37.2 ± 1.2 43.3 ± 0.8†††

A/G ratio 0.7 ± 0.0 0.8 ± 0.0§ 0.9 ± 0.0 1.0 ± 0.0

Total lean mass (kg) 46.3 ± 0.9### 40.5 ± 1.0 43.4 ± 0.6*** 39.8 ± 0.7

Leg lean mass (kg) 16.7 ± 0.4### 14.4 ± 0.4 15.0 ± 0.3** 13.8 ± 0.3

Telomere length (kb)

MNC 5.12 ± 0.33# 4.21 ± 0.19 3.16 ± 0.16 3.08 ± 0.17

Lymphocytes 5.67 ± 0.45# 4.59 ± 0.24 3.40 ± 0.18 3.25 ± 0.16

Monocytes 4.47 ± 0.33 4.25 ± 0.18 3.16 ± 0.19 2.91 ± 0.13

mtDNA copy number

MNC 962 ± 49# 801 ± 38 976 ± 51 1061 ± 56

Lymphocytes 853 ± 39# 715 ± 36 891 ± 48 1032 ± 65†

Monocytes 386 ± 22 399 ± 21 468 ± 22 439 ± 19

Figure 3.   Spearman’s correlations between the investigated variables visualised as arc diagrams in young 
(18‒30 years) women (n = 59) (A) and elderly (60‒80 years) women (n = 70) (B). A/G ratio android/gynoid 
fat ratio; All exercise hours of weekly exercise of all types; Football hours of weekly football training; Lymph 
lymphocytes; MNC mononuclear cells; Mono monocytes; mtDNA-CN mitochondrial copy number; Team 
handball hours of weekly team handball training; TL telomere length; VO2max maximal oxygen consumption.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11733  | https://doi.org/10.1038/s41598-021-91255-7

www.nature.com/scientificreports/

than sedentary peers21, while older (> 65 years) endurance-trained adults have shown 22% longer telomere length 
compared with older people with medium activity levels22. Despite sports participation at elite level and large 
exercise volumes, changes in telomere length have usually not been detected in young well-trained endurance 
athletes20,21,23, nor in young male elite football players24. The inconsistency in observations between young and 
older adults are most likely explained by the postulation that telomere length and attrition are relatively stable 
from childhood to adulthood11. Thus, the observed findings in YF are quite striking due to the young age of the 
group (~ 22 years). So far, intervention studies regarding exercise and telomere shortening are sparse. While some 
studies have not been able to detect changes in telomere length following short-term exercise interventions25,26, a 
few studies have observed minor adaptations of 2–4%12,27. Hence, the 22–24% superior telomere length observed 
in YF was assumed to be a result of many years of regular exercise, here among elite football training. To the 
best of our knowledge, the effect of football training on telomere shortening has never been investigated. Our 
findings show that football training at elite level might be particularly effective for achieving cellular anti-aging 
adaptations in young women.

Our correlation analysis showed that the weekly amount of exercise of all modalities and football training 
specifically were positively correlated with telomere length in young, but not elderly, women. An association 
between better cardiorespiratory fitness or a large training load and longer telomeres was found in 80% of all 
studies included in a recent systematic review10. In contrast to our findings, this association was mainly observed 
in middle-aged and older people, presumably due to the limited telomere attrition in young age. However, at 
least two studies have found an inverted “U” correlation, showing that both low and very high physical activity 
are associated with increased telomere shortening28,29. Thus, there may be an upper limit of exercise volume, 
where too much exercise elicits a negative effect on cellular aging. In the present study, 7 h of weekly football 
training had a positive effect on telomere length, indicating that this amount of football training is not excessive.

A potential explanation for the similar telomere length in EH and EC may be related to the sex and age of the 
groups. It has been demonstrated that the oestrogen level is positively associated with telomere length, possibly 
due to the ability of the hormone to upregulate telomerase and concurrently reduce oxidative stress30. As EH 
consisted of postmenopausal women, their oestrogen level was expected to be negligible, and they may not have 
the capacity to upregulate telomerase activity to the same extent as young women. Although telomere length did 
not significantly differ between the two elderly groups, the absolute values were 3–8% higher in EH compared to 
EC depending on the cell type. In a recent male football study by Hagman et al.24, differences in telomere length 
of only 1.3–2.5% were found to be statistically significant using the fluorescence in situ hybridisation coupled 
with flow cytometry (Flow-FISH) technique, but not with the qPCR method. Previous validation studies have 
confirmed that Flow-FISH may be more sensitive when measuring telomere length31, and we speculate whether 
use of this technique or a larger sample size would have resulted in significant findings in EH. It is, however, 
possible that football training is superior to team handball training regarding achievement of telomere adapta-
tions, but further studies are necessary to address this.

Mitochondria are characterised as ‘powerhouses of the cell’, as their primary role is to supply ATP from 
aerobic respiration for growth, development and preservation of the cell13. However, mitochondria also play 
a central role in the aging process through their vital functions for cell survival, including inflammation, ROS 
production, senescence, and apoptosis. In the present study, we found a higher mtDNA copy number in elderly 
women compared to young. This age-related increase in mtDNA copy number might be a consequence of, and 
compensatory mechanism for, a decline in PGC-1α and PGC-1β expression or an increased accumulation of 
mtDNA mutations and damage with age which leads to dysfunctional mitochondria and impaired mitochon-
drial respiration32. While PGC-1α is often referred to as the ‘master regulator’ of mitochondrial biogenesis33 
and mediates adaptations in tissues with high-energy needs, PGC-1β is mainly believed to participate in the 
maintenance of basal mitochondrial function34. Besides being involved in mitochondrial biogenesis, PGC-1α 
influences several other gene expressions involved in metabolic pathways, and strongly correlates with other 
markers of mitochondrial function including citrate synthase (CS) in healthy individuals35.

While few studies have investigated mitochondria in male football players36,37, mitochondrial characteristics 
has, to the best of our knowledge, never been studied in female elite football players. Furthermore, this is the 
first study to examine the effects of team handball training on mitochondria. In the present study, YF showed 
a 19–20% higher mtDNA copy number compared to YC. Meanwhile, EH showed a 14% lower lymphocyte 
mtDNA copy number compared to EC, but 3.4-fold higher PGC-1α expression in lymphocytes. Interestingly, the 
mtDNA copy number was comparable in the two exercise groups despite the large age difference, while the two 
non-exercise groups showed fluctuations in mtDNA copy number. A similar PGC-1α and PGC-1β expression 
observed in the two young groups was most likely explained by the markedly higher mtDNA copy number in YF. 
Our results show that an upregulation of the mitochondrial content, was favoured in young athletes, potentially 
due to sufficiently high mitochondrial function in young age.

Mitochondria are highly plastic organelles that can be remodelled in several ways according to the energetic 
challenges of the cell. These processes can be triggered by acute and/or chronic physical activity, and mitochon-
drial adaptations are generally expected following aerobic exercise training13. Previous studies indicate that the 
type of exercise training is decisive for the specific and diverse mitochondrial adaptations33. Indeed, a recent 
review concluded that training volume is crucial for changes in mitochondrial content, while exercise intensity 
appears to be important for changes in mitochondrial function38. Football and team handball training are both 
characterised as intermittent high-intensity exercise16,17. Although the exercise intensity during team handball 
training has never been investigated in elderly women, Hornstrup et al.39 have previously shown that the average 
heart rate during team handball training is very high (~ 85% of HRmax) and independent of prior team handball 
experience. Thus, sufficiently high exercise intensities necessary for changes in mitochondrial biogenesis and 
function were anticipated in both YF and EH. Increased PGC-1α expression has previously been observed in 
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lifelong trained male football players37 and in untrained men following long-term recreational football training36, 
indicating that football training can increase mitochondrial biogenesis in some cases.

The effect of chronic exercise on mitochondrial characteristics is believed to be a cumulative result of repeated 
bouts of acute exercise, as the expression of PGC-1α has been shown to be markedly and acutely increased by a 
single session of aerobic exercise33,40. As the included participants had not been physically active for minimum 
48 h prior to testing, the superior PGC-1α and PGC-1β expression observed in EH was expected to be a cumu-
lative effect of many years of regular team handball training. Although acute changes in PGC-1α and PGC-1β 
expression have been shown to differ following exercise, a positive correlation between transcription of the two 
genes has been found40. This is in line with the results from the present study showing some positive correlations 
between PGC-1α and PGC-1β expression, but more significant between-group differences in PGC-1α expression.

Previous studies have suggested that VO2max and aerobic capacity are not only limited by cardiorespiratory 
factors, but also by the mitochondria33,38. In line with this theory, our correlation analyses showed that VO2max 
was positively correlated with both PGC-1α and PGC-1β expression in some cell types in elderly women, while 
in young women VO2max was only correlated with MNC PGC-1α expression. A positive association between 
PGC-1α expression and VO2max has also previously been found in lifelong trained male football players37. Due to 
the noticeably higher VO2max in YF compared to YC, a higher PGC-1α expression was expected in YF. However, 
VO2max varied a lot within YF (33–55 ml/min/kg) and was markedly lower compared to other young female 
top athletes, e.g. middle-distance runners with VO2max values of ~ 55 ml/min/kg41. It could be speculated that 
a lower variation within YF, or a specific lower limit regarding VO2max, would have affected our findings. Our 
correlation analyses also showed that body fat percentage and A/G ratio were negatively correlated with PGC-1α 
and PGC-1β expression in elderly women, which is in line with previous findings in women of various ages30,31. 
The demonstrated correlations emphasise the importance of preserving a reasonable physical fitness (VO2max) 
through regular participation in aerobic exercise, while avoiding too much body fat, to achieve healthy aging.

Several hallmarks of aging have been identified2, but neither of the aging theories appear to be fully satisfac-
tory, and the complex interconnections are still a major challenge in aging research. Telomere length and mito-
chondrial function both exhibit a profound impact on the aging process, and pathological dysfunction in either 
has been proven to accelerate aging2. Thus, a direct association between telomere shortening and mitochondrial 
dysfunction has been proposed. During repetitive cell division, the absence or insufficient activity of telomerase 
results in telomere attrition, loss of chromosome ‘capping’ function and activation of p537. In general, p53 is 
postulated to mediate growth arrest, senescence, and apoptosis in tissues with a high turnover. p53 has, however, 
also been shown to decrease mitochondrial function through binding and suppression of PGC-1α and PGC-1β 
and their downstream gene network8. This telomere–p53–PGC axis is argued to compromise metabolism and 
organ function and contribute to development of age-related disorders. In the present study, telomere length 
and mtDNA copy number were positively correlated in all cell types in the elderly women indicating a potential 
connection between the two. Existence of a telomere-mitochondria interplay in leukocytes has previously been 
found in different groups of participants42, and a co-regulation due to oxidative stress, inflammation and repeated 
cell replication is possible5,42. It might be speculated that the beneficial effects of football and team handball 
training in the present study were a result of reduced oxidative stress and inflammation, but more studies are 
required to establish this.

Cellular senescence and cell death are other central hallmarks of aging associated with telomere shortening 
and mitochondrial dysfunction2. Due to a weaken immune system in old age, senescent cells are accumulated 
in all types of body tissue. This accumulation reduces tissue repair and increases chronic inflammation, which 
affects the progression of aging and increases the risk of age-related diseases43. Hence, telomere shortening and 
mitochondrial dysfunction are linked to the onset and progression of many of the same age-related diseases, 
such as cardiovascular and neurodegenerative diseases as well as metabolic disorders like type 2 diabetes5,44. 
PGC-1α seems to play a key role in endothelial cell regulation and atherosclerosis, as an upregulation of the 
gene has been shown to prevent development of, or even reduce, atherosclerotic lesions45. Thus, the finding of a 
higher expression of key regulators of mitochondrial biogenesis and function in EH may indicate a significant 
reduced risk of CVD. Furthermore, numerous studies have shown that mitochondrial dysfunction is associated 
with muscle wasting in different muscular disorders, and that elevated PGC-1α levels may postpone the onset 
and reduce the progression of age-related loss of muscle mass44. EH demonstrated an impressive total lean mass 
that was 3 kg higher than observed in YC despite an age difference of more than 40 years. It is possible that the 
upregulated PGC-1α expression in EH was linked to muscle mass maintenance in the group despite the high age.

Finally, possessing short telomeres is associated with a mortality rate that is almost twice as high as in those 
having longer telomeres4. Interestingly, telomere length may predict mortality risk in young individuals in par-
ticular, as the mortality association diminishes with age46. Hence, the noticeably longer telomeres in YF may result 
in a markedly reduced mortality risk. Whether telomere attrition and mitochondrial dysfunction are causative 
or secondary effects of the diseases are not fully established, and more research within this aging topic is needed.

As with all cross-sectional studies, some degree of self-selection or confounding cannot be ruled out. It is 
plausible that the exercise groups in general have a healthier lifestyle than the sedentary groups, which most likely 
poses an additive effect of the sports participation itself on the measured aging markers. Indeed, telomere length 
is influenced by several other factors, such as dietary and smoking habits, perceived stress levels, socioeconomic 
status, chronic inflammation and paternal age4. To exclude the effects of confounding factors and natural genet-
ics, a large randomised controlled trial is needed. As oestrogen is assumed to play a role in telomere regulation, 
measurement of circulating oestradiol and inclusion of this in the correlation analysis could have been interesting. 
Although the effect of both team handball and football training was investigated in the present study, a direct 
comparison of the two exercise types was not attempted. Similar team sports, such as basketball or floorball, may 
have a comparable effect on aging, although this has not yet been investigated.
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In summary, this cross-sectional study showed that elite football and lifelong team handball training are 
associated with beneficial anti-aging cellular effects in MNCs in women. Specifically, young elite football play-
ers demonstrated higher telomere length and higher mtDNA copy number compared to young untrained con-
trols, while elderly team handball players showed higher PGC-1α and PGC-1β expression compared to elderly 
untrained controls. These cellular adaptations were positively correlated with VO2max and the amount of weekly 
exercise in MNCs and lymphocytes, emphasising the importance of preserving a reasonable fitness and activity 
level irrespective of age. As telomere shortening and mitochondrial dysfunction are highly associated with several 
age-related diseases and mortality, our findings indicate that women engaged in team sports such as football and 
team handball may potentially increase their health span and, ultimately, lifespan.

Methods
Participants.  This study comprised a relatively large sample size of 129 healthy (no chronic diseases) and 
non-smoking (> 1 year) women. The sample size was based on previous studies of similar character conducted 
by the group of authors24 and former collaborators23. During the recruiting process, a total of 290 women were 
screened for participation, of whom 161 were excluded due to lack of compliance with the inclusion criteria 
(n = 84) or because they declined to participate after consideration (n = 77). The included participants were 
allocated into one of four groups: young elite football players (YF) aged 18–30 years (22.5 ± 0.6 years, n = 29); 
untrained young controls (YC) aged 18–30 years (24.9 ± 0.4 years, n = 30); lifelong trained elderly team handball 
players (EH) aged 60–80 years (63.9 ± 0.7 years, n = 35); and untrained elderly controls (EC) aged 60–80 years 
(66.1 ± 0.6 years, n = 35). EH were recruited from team handball clubs all over Denmark with help from the Dan-
ish Handball Federation (Dansk Håndbold Forbund, DHF), whereas YF were recruited from football teams in 
Zealand, Denmark, competing in one of the two best female leagues in Denmark (3F League or 1st Division). 
The age-matched untrained controls were recruited through local newspapers, local institutions, and online 
advertisements.

YF had a history of 14.9 ± 0.6 years of regular football training and had been playing at a high level for 6.2 ± 0.6 
years. On average, their age of debut was 6.9 ± 0.5 years. YF had a total of 6.7 ± 0.2 h of football training per week, 
including 1.0 ± 0.0 90-min matches, plus 2.3 ± 0.4 h of other types of training per week, primarily resistance train-
ing and running. Including all types of exercise, YF had been regularly physically active for 17.7 ± 0.7 years at the 
time of the study. EH had a history of 43.3 ± 2.0 years of regular team handball training and their age of debut was 
12.1 ± 1.4 years. At the time of the study, EF had a total of 2.0 ± 0.1 h of team handball training per week, includ-
ing 0.6 ± 0.1 50-min matches. Besides team handball training, EH had 2.7 ± 0.4 h of other types of training per 
week, e.g. jogging, resistance training, cycling, yoga, swimming, dancing and gymnastics. Including all types of 
exercise, EH had been regularly physically active for 50.2 ± 1.6 years. YC and EC had not participated in regular 
physical exercise for 4.8 ± 0.9 and 14.7 ± 3.2 years, respectively, or had never participated in a regular exercise 
programme (n = 10 in EC). Furthermore, the untrained controls had never engaged in sport at a high level.

Among the young women, the use of hormonal contraception included birth control pills (n = 15 in YF, 
n = 12 in YC) and an intrauterine device (n = 2 in YF, n = 3 in YC). None of the elderly women took hormone 
supplements due to menopause, but some used blood-pressure-lowering (n = 2 in EH, n = 9 in EC) or choles-
terol-lowering (n = 2 in EH, n = 6 in EC) medication due to mild-to-moderate hypertension or hyperlipidaemia. 
None of the participants had been exposed to chemotherapy or radiation therapy. All subjects provided written 
informed consent. The study was carried out in accordance with the Declaration of Helsinki and approved by 
the local ethical committee of the Capital Region of Denmark (journal. no. H-15009312).

Clinical testing.  All clinical testing was carried out in the morning after an overnight fast (> 8 h). The effect 
of the menstrual cycle and associated hormonal fluctuations in the young women was considered carefully by 
consistent sampling of the blood within a narrow timespan according to each participant’s individual menstrual 
cycle (days 3–9). The participants were not allowed to perform any strenuous exercise for 48 h prior to testing 
to exclude acute effects. A peripheral venous blood sample was collected in resting state and under standardised 
conditions. 60 ml of sodium citrate blood was used for isolation of mononuclear cells (MNCs), as described 
below. Prior to blood sampling, whole-body dual-energy X-ray absorptiometry (DXA) was performed to evalu-
ate body fat percentage, fat distribution and lean body mass. The effective radiation dose for the DXA scan 
was 4.66 μSv, and all analyses were performed using enCORE Version 14.10 software (GE Healthcare). On a 
separate test day (> 48 h from the first test day), maximal oxygen consumption (VO2max) was measured during a 
maximal fitness test on an ergometer bike using a computerised metabolic measurement system (Oxycon Pro®). 
The young participants completed two submaximal loads (40 and 80 W) of 3 min each, after which the load was 
increased by 15 W every 30 s. The elderly participants only completed the lowest submaximal load (40 W) for 
3 min, after which the load was increased by 10 W every 30 s. All participants biked until exhaustion, and VO2max 
was calculated as the mean over 30 s when oxygen consumption peaked.

Isolation of MNCs.  Ficoll density gradient centrifugation was performed to isolate MNCs from 60 ml of 
sodium citrate blood, as previously described23, and the cell number was quantified in a Neubauer chamber after 
staining with Türk’s solution. Immediately after isolation, the MNCs were resuspended in a freezing medium 
(RPMI1640 medium + 10% foetal calf serum + 5% dimethyl sulfoxide), distributed into cryotubes and gently 
frozen to − 80 °C in a “Mr. Frosty” freezing container (Thermo Fisher Scientific, Braunschweig, Germany). The 
deep-frozen cryotubes were transported on dry ice to Dr Asghar’s lab at Karolinska Institutet in Solna (Stock-
holm, Sweden) and kept at − 80 °C until analysis.
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DNA and RNA isolation.  Lymphocytes and monocytes were separated using the MACS cell sorting proto-
col (see supplementary method for details). DNA was extracted from sorted cells using a Qiagen kit (QIAamp® 
DNA Blood Mini Kit, cat # 52304) according to the manufacturer’s instructions. DNA was quantified using a 
Qubit 1 × DSDNA HS kit (cat # Q33231, Invitogen) on Qubit and diluted to 1 ng/ul for the telomere and mtDNA 
copy number measurement. RNA was extracted from sorted cells using a Qiagen kit (QIAamp® RNA Blood Mini 
Kit, cat # 990395) according to the manufacturer’s instructions. RNA was then quantified using a Qubit™ RNA 
HS kit (cat # Q32855, Invitrogen) on Qubit.

Telomere and mtDNA copy number essay.  Telomere length and mtDNA copy number were measured 
using a ScienCell kit (cat # 8958). Each 15 ul reaction contained 7.5ul QuantiNova Syber green (cat # 208054, 
Qiagen), 0.5 ul telomere or single-copy (SCR) or mitochondrial primers, 0.1 ul ROX (passive reference dye), 1.9 
ul DNA/RNA free water and 5 ul (1 ng/ul) template DNA. For telomere quantitative polymerase chain reaction 
(qPCR), the thermal cycle profile comprised incubation at 50 °C for 2 min and 95 °C for 10 min before run-
ning 30 thermal cycles (95 °C for 15 s, 56 °C for 45 s and 72 °C for 45 s). For single‐copy gene and mtDNA copy 
number qPCR, the thermal cycle profile comprised incubation at 50 °C for 2 min and 95 °C for 10 min before 
running 40 thermal cycles (95 °C for 15 s, 54 °C for 45 s and 72 °C for 45 s). Each assay was run on separate plates 
and each plate contained a serially diluted DNA sample to calculate PCR efficiency. The PCR acceptance value 
was set as 100 ± 15%, and any plate producing the PCR efficiency outside this range was rerun. Each sample was 
run in triplicate, and mean CT value was used for final calculation after carefully checking the melt curve for 
each sample. A reference genomic DNA was added on each plate with known telomere length (369 ± 11 kb) and 
mtDNA copy number (1200 ± 9 copies) per diploid cell. ΔCT for both telomere length and mtDNA copy number 
was calculated using the formula (CT target sample − CT reference sample) after adjusting PCR efficiency using 
the Pfaffl method47. We then calculated ΔΔCT for both telomere length and mtDNA copy number using the 
formula (TELΔCT − SCRΔCT or mtDNAΔCT − SCRΔCT). Relative telomere of target sample to reference sample 
was calculated by 2^− ΔΔCT, and the ratio was then multiplied by 369 Kb to get telomere length per diploid cell. 
Telomere length of diploid cell was divided by the number of chromosome ends (92) to get average telomere 
length at each chromosome end (2^− ΔΔCT × 369/92). mtDNA copy number per diploid cell of target sample to 
reference sample was calculated by 2^− ΔΔCT, and the ratio was then multiplied by 1200 mtDNA copy number 
for each sample (2^− ΔΔCT × 1200). Our method showed very high repeatability for telomere length (ICC = 97) 
and mtDNA copy number (ICC = 98).

Gene expression.  cDNA was synthesised using a QuantiTec Reverse Transcriptase kit (cat # 205311) 
according to the manufacturer’s instructions. The plate was incubated for 10 min at 25 °C followed by 1 h at 
42 °C and 5 min at 85 °C to inactivate the enzyme on a QuantStudio5 thermocycler. Relative gene expression of 
peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and beta (PGC-1β) was deter-
mined using the comparative ΔCT method by calculating the CT values of the target genes (PGC-1α and PGC-1β) 
against the CT values of the reference gene (GAPDH). Both target gene and GAPDH were amplified in same 
wells, run in triplicate, and respective CT values were averaged before performing the ΔCT calculation (ΔCT = CT 
Target − CT GAPDH). Gene expression values were converted into log 2 of ΔCT (2^− ΔCT).

PGC-1α and PGC-1β expression was measured using a TaqMan® Gene Expression Assay (cat # Hs00173304_
m1, Hs00993805_m1; Applied Biosystem) on a QuantStudio 5 qPCR instrument. The total qPCR reaction of 20 µl 
contained 3 µl cDNA, 10 µl TaqMan® Multiplex Master Mix (cat # 4461882; Applied Biosystem), 1 µl GAPDH 
Assay (cat # 4485712; Applied Biosystem), 1 µl PGC-1α and PGC-1β Assay and ddH2O. The TaqMan® GAPDH 
Assay was added to each run as an endogenous control. The thermal profile comprised 95 °C for 20 s, followed 
by 45 thermal cycles (95 °C for 1 s and 60 °C for 20 s).

Statistical analysis.  Statistical analyses were performed in Stata (version 16), and figures were generated 
using JMP (version 14). Univariate and multivariate analyses were used to assess the differences between the 
groups for all the studied variables. Age was included in all multivariate models as a covariate. We used the math-
ematical and topological features of Spearman’s correlation (rs) and visualised it as arc diagrams using R-studio 
(Version 1.1.442) to investigate the potential correlation between variables. In the event of missing values in 
the dataset, these were imputed (< 5%) to complete the data set. The results remained the same with or without 
imputed values. Results are presented as means ± SEM and the statistical significance level was set at p < 0.05.

Data availability
Data available on request from Muhammad Asghar (asghar.muhammad@ki.se) and/or Marie Hagman (mhag-
man@health.sdu.dk).
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