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Prestimulus Alpha and Mu Activity Predicts Failure
to Inhibit Motor Responses
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Abstract: Do certain brain states predispose humans to commit errors in monotonous tasks? We used
MEG to investigate how oscillatory brain activity indexes the brain state in subjects performing a Go-
noGo task. Elevated occipital alpha and sensorimotor mu activity just prior to the presentation of the
stimuli predicted an upcoming error. An error resulted in increased frontal theta activity and
decreased posterior alpha activity. This theta increase and alpha decrease correlated on a trial-by-trial
basis reflecting post-error functional connectivity between the frontal and occipital regions. By examin-
ing the state of the brain before a stimulus, we were able to show that it is possible to predict lapses
of attention before they actually occur. This supports the case that the state of the brain is important
for how incoming stimuli are processed and for how subjects respond. Hum Brain Mapp 30:1791–1800,
2009. VC 2009 Wiley-Liss, Inc.
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INTRODUCTION

To be able to sustain attention is of great importance in
our daily life. A momentary lapse in attention could be
fairly benign such as over pouring coffee but could also

have more serious consequences such as traffic accidents.
Despite how common these lapses of attention are in daily
life, there has yet to be developed a system-wide under-
standing of the brain mechanisms underlying them
[Weissman et al., 2006]. The central questions of this article
is (1) can we identify states of the brain which predisposes
a lapse in attention and (2) how do errors change the brain
state in order to avoid future lapses in attention.

Brain states which might predict behavioral errors can
be investigated by various techniques. One option is to
use fMRI; however, because of the temporal smearing of
the hemodynamic response function it is difficult to sepa-
rate pre from poststimulus activity [Weissman et al., 2006].
Another possibility is to apply electrophysiological meas-
ures such as EEG and MEG which offer a better temporal
resolution. EEG and MEG signals are often analyzed using
event-related potentials and fields (ERPs and ERFs). How-
ever, this approach can be problematic because it requires
a baseline interval which is difficult to define when inves-
tigating prestimulus signals. Baseline issues are not a con-
cern when characterizing brain states by oscillatory
activity given that the absolute power of these signals can
be measured and contrasted between conditions. Several
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recent studies do point to visual and somatosensory per-
ception being modulated by prestimulus oscillatory activ-
ity. In particular, activity in the alpha band has been
shown to predict failures in perception [Ergenoglu et al.,
2004; Linkenkaer-Hansen et al., 2004; Thut et al., 2006; van
Dijk et al., 2008].

In this study, we have investigated how oscillatory brain
activity is modulated before and after errors in a Go-noGo
task requiring sustained attention (the sustained attention
response task: SART). We have chosen the Go-noGo task
because it is well suited for investigating both response-in-
hibition and error-processing [Bokura et al., 2001; Jaffard
et al., 2008; Manly et al., 1999; Picton et al., 2007; Rubia
et al., 2001]. In the paradigm participants respond by
pressing a button to a frequent Go stimulus (digit 1–4 and
6–9) but must withhold responses to an infrequent noGo
stimulus (digit 5). Because the Go stimuli are much more
probable than the noGo stimuli, the paradigm lulls the
participant into responding automatically to all stimuli.
Preventing this automatic behavior severely taxes the sus-
tained attention system, and errors are often elicited.

This study compared the prestimulus and postresponse
oscillatory activity recorded using MEG from subjects per-
forming the Go-noGo task. We used MEG because the
technique allows us to both measure and localize oscilla-
tory brain activity. Our aim was to identify brain states
characterized by oscillatory activity that prior to the onset
of a noGo stimulus predicted the subject’s failure to inhibit
a motor response. We chose to focus on the theta, alpha,
and beta frequency bands, because prior studies that have
implicated the involvement of these bands in various
aspects of visual processing, motor response, and error
detection [Ergenoglu et al., 2004; Linkenkaer-Hansen et al.,
2004; Mazaheri and Picton, 2005; Thut et al., 2006; van
Dijk et al., 2008; Yordanova et al., 2003; Zhang et al.,
2008a,b]. We also analyzed oscillatory activity after errone-
ous motor responses to investigate the cognitive processes
initiated to prevent future mistakes. Such processes might
include a top-down drive to perceptual areas. This we
have characterized using a measure of functional connec-
tivity based on power correlations in different frequency
bands.

METHODS

Participants

Fourteen normal young adults (3 female) with a mean
age of 27 (range 23–33) years participated as subjects. All
subjects were right-handed and all had normal or cor-
rected-to-normal vision.

Experimental Procedures

The visual stimuli were single digits between 1 and 9
presented in the lower left visual field with an eccentricity

of 3.2�. The width of the stimuli extended 5� by 5� and the
screen was about 70 cm away from the subject. The fixa-
tion cross at the centre of the screen was constantly on.
Each stimulus was displayed for 0.2 s and the intertrial
interval was 1.5 s. The stimuli were presented in 12 blocks
of 151 trials. Participants were asked to respond to all dig-
its except ‘‘5’’ by pressing a button with the right index
finger. Digits ‘‘1–4’’ and ‘‘6–9’’ are thus the ‘‘Go stimuli’’
and digit ‘‘5’’ the ‘‘noGo stimulus.’’ The presence or ab-
sence of a button-press was assessed for each trial. Trials
were then categorized as ‘‘Hits’’ (response to any digit
except 5), ‘‘Correct Withholds’’ (no response to the digit 5),
and ‘‘False Alarms’’ (response to the digit 5). All trials
which were preceded by a noGo trial were excluded from
further analysis. In all our analysis the amount of Correct
Withhold and Hit trials was matched to those of False
Alarms. We found that on average subjects were unable to
inhibit their response to digit 5 in 40% of the trials. After
artifact rejection there were on average about 40 False
Alarm trials per subject.

Data Acquisition

The MEG data were acquired with a 151-sensor axial
gradiometer system (CTF Systems, Port Coquitlam, Can-
ada) placed in a magnetically shielded room. In addition,
the horizontal and vertical electrooculogram (EOG) were
recorded to later discard trials contaminated by eye move-
ments and blinks. The ongoing MEG and EOG signals
were low-pass filtered at 300 Hz, digitized at 1,200 Hz,
and stored for off-line analyses. Prior to and after the data
acquisition, the subjects’ head position relative to the gra-
diometer array was determined using coils positioned at
the subject’s nasion, and at the left and right ear canal.

High-resolution anatomical images (voxel size ¼ 1 mm3)
of the whole brain were acquired using a 1.5-T Siemens
Sonata whole-body scanner (Erlangen, Germany). These
images were used for reconstruction of individual head
shapes to create forward models for the source reconstruc-
tion procedures described later.

Preprocessing

The data analysis was performed using the FieldTrip
which is an open source Matlab toolbox developed at the
F. C. Donders Centre for Cognitive Neuroimaging (http://
www.ru.nl/fcdonders/fieldtrip). Data segments contami-
nated with artifacts, eye movements, eye blinks, muscle ac-
tivity, and jumps in the superconducting quantum
interference devices (SQUIDS), were detected with a semi-
automatic routine and discarded. When analyzing the to-
pography of the power spectra at the sensor level we
computed the planar gradiometer representation of the
data [Bastiaansen and Knosche, 2000]. The calculated pla-
nar field gradient approximates the signals measured by
physical planar gradiometers. This is often advantageous
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when analyzing MEG signals, because the strongest field
magnitude of the planar gradient signal usually is situated
above the neural sources [Ahonen et al., 1993]. The hori-
zontal and vertical components of the planar gradients
were estimated at each sensor location using the fields
from the sensor and its neighboring sensors. The power
values for the horizontal and vertical components after the
spectral analysis were summed for each sensor location.
For the ERFs the root-mean square were calculated for the
horizontal and vertical components. The same approach
has been used in several other publications [Bauer et al.,
2006; Jokisch and Jensen, 2007; Nieuwenhuis et al., 2008;
Osipova et al., 2006]. For source reconstruction, we used
the data from the true axial sensors and not the planar
gradient estimate.

Prestimulus Frequency Analysis

The oscillatory activity was characterized by calculating
the power spectra using one second intervals of data pre-
ceding the stimulus. A 1,200 data points Hanning taper
(1 s long) was applied to the data prior to calculating the
spectra. The spectra were calculated for the individual tri-
als and the averaged.

Postresponse Time-Frequency Representations

of Power

Time-frequency representations (TFRs) of power were
calculated for each trial using a taper approach applied to
short sliding time windows [Percival and Walden, 1993].
The data in each time window were multiplied with a
Hanning taper having the length of the time window for
the frequencies 2–30 Hz. The power values were calcu-
lated for the horizontal and vertical components of the
estimated planar gradient and summed. The planar gradi-
ent power estimates were subsequently then averaged
over trials for a given condition. We applied an adaptive
time window of three cycles for each frequency (DT ¼ 3/
f). (A similar approach was used in Jokisch and Jensen
[2007] and Osipova et al. [2006].

Statistical Analysis

The difference in frequency power between conditions
was first quantified within each subject over all trials by
means of t-values which subsequently were converted to
z-values (SPM2, http://www.fil.ion.ucl.ac.uk/spm). The
variance was estimated over trials. This procedure served
to normalize the power values and to reduce the contribu-
tion of subjects with large variance in the power estimates.
The significance of the difference in z-values between con-
ditions over subjects (random effects analysis) was tested
by means of the cluster level randomization test proposed
by Maris and Oostenveld [2007] also incorporated in the

FieldTrip software. This test controls the Type-1 error rate
in a situation involving multiple comparisons (e.g. multi-
ple sensors and/or time-frequency tiles). The statistical
analyses were conducted separately for each of the three
frequency bands: theta (4–7 Hz), alpha (10–11 Hz), beta
(18–24 Hz). These bands were loosely based on the main
frequency bands used to classify the spontaneous EEG
[IFSCN, 1974], and prior literature [Ergenoglu et al., 2004;
Linkenkaer-Hansen et al., 2004; Mazaheri and Picton, 2005;
Thut et al., 2006; van Dijk et al., 2008; Yordanova et al.,
2003; Zhang et al., 2008a,b]. From those frequency-bands
and the entire set of time points, the z-values were sub-
jected to a cluster-level test. In the second step the Monte
Carlo estimate of the permutation P-value of the cluster is
obtained by comparing the cluster-level test statistic to a
randomization null distribution assuming no difference
between conditions. This distribution is obtained by 1,000
times randomly swapping the conditions in subjects and
calculating the maximum cluster-level test statistic. Using
1,000 random draws the Monte Carlo P-value is an accu-
rate estimate of the true P-value. The same procedures
were followed for the statistical analysis of the frontal
theta-alpha topography of correlations except that it was
the raw correlation values at each sensor which was sub-
jected to a cluster-level test.

Source Reconstruction

Source reconstruction was performed using a frequency-
domain beam-forming approach [Dynamic Imaging of
Coherent Sources, DICS]. The DICS technique uses adapt-
ive spatial filters to localize power in the entire brain
[Gross et al., 2001; Liljeström et al., 2005]. A realistically
shaped single-shell description of the brain-skull interface
was constructed, based on the individual anatomical MRIs
[Nolte, 2003]. The brain volume of each individual subject
was discretized to a grid with a 0.8 cm resolution and the
lead field was calculated for each grid point. Using the
cross-spectral density matrices and the lead-field, a spatial
filter was constructed for each grid point [Gross et al.,
2001], after which the power at each grid point was esti-
mated for both conditions separately in every subject. One
filter was calculated for all conditions and then applied for
the data divided over the individual conditions. Sources
were estimated on time-frequency tiles that were prese-
lected from the sensor level analysis. As a first step, z-val-
ues of the source estimates were calculated over trials,
comparing the conditions within each subject. Prior to
averaging the source estimates of the individual subjects’
functional data, the individual anatomical MRI images
were spatially normalized to the MNI brain [Montreal
Neurological Institute (MNI), Montreal, Quebec, Canada;
http://www.bic.mni.mcgill.ca/brainweb] using SPM2
(http://www.fil.ion.ucl.ac.uk/spm). The z-values dis-
played for the source plots are uncorrected for multiple
comparisons.
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RESULTS

Fourteen subjects performed a Go-noGo task in which
they had to respond to a frequent Go stimulus (digits 1–4
and 6–9) but had to withhold responses to an infrequent
noGo stimulus (digit 5).

Behavioral Data

The grand average of mean reaction times (RTs) for
False Alarms (mean ¼ 296 ms, SD ¼ 39) was significantly
shorter than for Hits (mean ¼ 336 ms, SD ¼ 28) (P <
0.001, two-sided t-test). This replicates previous studies
showing that errors are more likely for short RTs [Manly et
al., 1999; Robertson et al., 1997]. This speeding is likely to
reflect a temporary inattention as participants are lulled
into an ‘‘automatic’’ response mode [Robertson et al., 1997].

High Prestimulus Alpha Activity Predicts

Response Errors

We set out to investigate if prestimulus oscillatory activ-
ity reflected states in which subjects were more prone to
committing errors. This was done by comparing the presti-
mulus power spectra for False Alarms to Correct With-
holds. Statistical comparison revealed significantly greater
alpha activity (10–11 Hz) preceding False Alarms than pre-
ceding Correct Withholds at sensors over posterior and
left central regions (P < 0.008; Fig. 1A). The same analysis
did not yield any significant difference in the prestimulus
amplitude of theta and beta activity between False Alarms
and Correct Withholds. To identify the sources accounting
for the difference in alpha, we applied a beamforming
technique. When contrasting False Alarms to Correct With-
holds we identified the sources in occipital cortex and left
and right primary sensorimotor cortex (Fig. 1B). Note the
sources were slightly more central than the hand area of pri-
mary motor cortex. The location of the occipital source and
the left sensorimotor sources were consistent with differences
in 10–11 Hz power observed at the sensor level (see Fig. 1).

We examined if the prestimulus oscillatory power was
correlated with subsequent reaction-times on a trial-by-
trial basis. We found that prestimulus alpha activity had
no effect on reaction-times. Moreover, there was no differ-
ence in the amplitude of prestimulus alpha activity when
a subset of Hit trials with fast reaction-times was com-
pared to those of slow reaction times. We conclude that
alpha activity in occipital cortex and �10 Hz mu activity
in sensorimotor areas are predictive of failures to inhibit
motor responses.

Increase in Frontal Theta and Decreases in

Alpha and Beta Activity Follow Response Errors

To investigate changes in brain states after an error was
committed, we analyzed the postresponse interval aligned

to the button press. We found that for both types of
responses there was a transient increase in theta power (3–
7 Hz) at the time of the button press, followed by posterior
alpha (10–11 Hz) and central beta (18–24 Hz) suppression
(see Supporting Information Fig. 1). Both the alpha and
beta power rebounds at �500 ms were stronger for Hits
than False Alarms. Subsequently, our analysis focused on
the postresponse differences in oscillatory activity between
False Alarm and Hit trials. Between 0 and 600 ms after the
button press, theta power (3–7 Hz) was higher for False
Alarm responses than for Hits in a cluster comprising
frontal sensors (P < 0.001; Fig. 2A,B). The beamforming
technique allowed us to localize the difference in theta ac-
tivity to the left superior frontal gyrus, left superior medial
gyrus, and right middle frontal gyrus (Fig. 2C). Because of
the frontal distribution of the effects in the theta band,
artifacts from eye movements and blinks are a concern in
case the ocular artifact rejection routines did not work

Figure 1.

The power calculated in prestimulus interval (time �1 to 0 s)

for False Alarms compared to Correct Withholds. (A) Topogra-

phy of the 10–11 Hz power of the difference between False

Alarms and Correct Withholds averaged over subjects (planar

gradient). The cluster of sensors showing significantly stronger

alpha power for False Alarms than Correct Withholds is marked

with dots (P < 0.008; cluster randomization routine). (B) Grand

average of the spectra calculated (�1 to 0 s; red line, False

Alarms; blue line, Correct Withholds). The spectra were aver-

aged over the cluster of sensors that showed a significant differ-

ence. (C) Using a beamforming approach we identified the

regions accounting for the difference in alpha power between

False Alarms and Correct Rejections to occipital and sensorimo-

tor cortex.
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perfectly. To rule out such concerns, we also performed
analysis on the horizontal and vertical EOG sensors. We
found no significant difference in the amount of theta ac-
tivity between the false alarms and hits. We conclude that

eye movements and blinks do not contribute to the error
related effects in the theta band.

Between 100 and 800 ms after the button press, alpha
activity (10–11 Hz) was lower for False Alarms than for

Figure 2.

The power of oscillatory activity characterized in the postres-

ponse interval for False Alarms compared to Hits. (A) Grand

average of the difference TFRs (False Alarms–Hits) of represen-

tative frontal, posterior and central sensors (sensors marked in

white). The button press occurred at t ¼ 0 s. No baseline cor-

rection was applied. (B) Grand average of the topography of

theta (3–7 Hz), alpha (10–11 Hz), mu (10–11 Hz), and beta (18–

24 Hz) activity. The dots denote clusters representing significant

differences (cluster randomization routine). (C) A beamforming

technique was applied to localize the regions responsible for

producing the difference in the power shown in (B). The theta

increase was localized to frontal regions. Decrease in alpha and

mu activity was localized to occipital cortex and extended sen-

sorimotor areas. The beta decrease was localized to primary

sensorimotor areas.
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Hits in central and posterior sensors (Fig. 2A; central
panel; P < 0.01). The sources responsible for this decrease
in alpha activity were localized in occipital cortex
(Fig. 2C). Between 500 and 1,000 ms after the button press,
mu activity (10–11 Hz) was lower over central areas for the
same comparison (P < 0.01; Fig. 2B). The sources of the mu
rhythm were localized to the left and right sensorimotor
regions extending into premotor areas (Fig. 2C). Finally
between 500 and 850 ms after the button press, beta power
(18–24 Hz) was lower for False Alarms compared to Hits
constrained to left central sensors (P < 0.0001; Fig. 2A,B).
The primary source of the difference in the beta band was
localized to sensorimotor cortex (Fig. 2C). In sum, when
comparing erroneous to correct button presses, we found
that errors were followed by an immediate increase in
theta activity produced in frontal cortex, followed by a
decreases in occipital alpha and sensorimotor mu and beta
activity.

Functional Coupling Between Frontal Theta

and Posterior Alpha Activity

Do the changes in frontal theta activity following an
error have consequences for the activity in posterior areas?
To address this question, we conducted an analysis quite
similar to the psychophysiological interactions (PPI)
approach often applied to fMRI data [Friston et al., 1997].
A psychophysiological interaction entails examining how
the correlation between the activities in two areas changes
with respect to an experimental manipulation. For our
purposes rather than investigating cognitive modulations
in BOLD signal correlations between different regions, we
investigated the correlation in power changes in various
frequency bands. Specifically, we asked if there were
error-related interactions between the postresponse frontal
theta activity and posterior alpha activity at a time interval
of 0–0.5 s after the response. We chose two frontal sensors
displaying a strong difference in the theta band (False
Alarms and Hits). For both Hits and False alarms, the
trial-by-trial theta power from the seed sensors was anti-
correlated with the alpha power across all other sensors to
create topographies of the correlation. The statistical signif-
icance of these topographies were assessed at the group
level with a one-sample t-test of the correlations at each
sensor and then subjected to a cluster-level randomization
test (see Methods) to correct for multiple comparisons. We
found significant cross-frequency coupling expressed as
anticorrelations between frontal theta and alpha power in
a cluster of right occipital sensors for False Alarms (P <
0.028, Fig. 3, left panel), but not Hits (Fig. 3, middle panel).
Moreover, the anti-correlations of these right occipital sen-
sors were significantly greater in magnitude for False
Alarms compared to Hits (pair-wise t-test, P < 0.026; Fig. 3B,
left panel).This is also displayed in right panel of Figure
3B where we plot the correlation between frontal theta
and occipital alpha power for Hits versus False Alarms.

Note that most of the data points fall above the diagonal.
To rule out concerns that eye movements or blinks could
explain the frontal theta and posterior alpha coupling, we
repeated the abovementioned analysis using the horizontal
and the vertical EOG electrodes as the seed sensors. We
did not find any significant task dependent changes in cor-
relations between the theta in either of the EOG electrodes
and the alpha activity across the MEG sensors. In sum, we
found that after erroneous button presses, the frontal theta

Figure 3.

Correlations between the frontal theta increase and the poste-

rior alpha decrease. Two frontal sensors (marked with stars)

were used a reference for the correlation analysis. The correla-

tions between theta power in the reference sensors and the

alpha power in all the other sensors were calculated on a trial-

by-trial basis (0–500 ms after response). (A) Left panel: grand

average of the theta-alpha correlation for False Alarms. Note

the strong anticorrelation in an isolated region over posterior

regions (P < 0.028, one sample t-test, cluster randomization

routine). Right panel: grand average of the theta-alpha correla-

tions for Hits. There were no significant correlations. (B) The

difference in theta-alpha power correlations between False

Alarms and Hits. Right panel, the theta-alpha power correlation

of the 14 subjects for False Alarms (x-axis) and Hits (y-axis).

They were calculated for the two frontal sensors (marked by

stars) and the posterior significant sensors (A, right panel). The

correlations over the right posterior sensors were significantly

more negative for False Alarm than Hits (P < 0.026, pair-wise

t-test).
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activity became significantly anticorrelated with occipital
alpha activity.

Errors Generated a Response-Locked ERNm

Over Frontal Regions

Planar gradient representations (see Methods) were
calculated for the ERFs time-locked to the button press
(Fig. 4A). As baseline we used a 100 ms interval prior to
the button press. During the first 0.5 s the ERFs were

larger for False Alarms than Hits. This effect was signifi-
cant in a large left-lateralized cluster dominated by frontal
sensors (P < 0.001; Fig. 4B). Because of the topography
and time-course of the difference in the ERFs between
False Alarms and Hits, we consider it to be the magnetic
equivalent (ERNm) of the error-related negativity (ERN)
identified using EEG [Coles et al., 2001; Falkenstein et al.,
2000]. Consistent with the MEG findings of Stemmer et al.
[2004] this activation tended to occur later in MEG than
EEG data, possibly indicating that EEG and MEG do not
detect identical neural networks involved in error-related
processes. Next we calculated the time frequency represen-
tations (TFRs) of the ERFs. The difference in ERFs for False
Alarms versus Hits in the 3–7 Hz theta band was sig-
nificant in a cluster over frontal sensors (P < 0.001;
Fig. 4C,D). We did not find any significant difference with
respect to alpha and beta bands in the TFRs of the ERFs.
Thus, its likely that in our data a major part of the ERNm
can be attributed to theta activity phase-locked to the but-
ton press [Luu and Tucker, 2001; Makeig et al., 2004].

DISCUSSION

We have investigated oscillatory brain activity in a Go-
noGo task. We found that increases in prestimulus 10–11
Hz alpha and mu activity produced in occipital and senso-
rimotor regions were predictive of errors. After an error
was committed we found that 10–11 Hz alpha activity was
reduced in occipital and sensorimotor regions including
premotor regions. That was in contrast to frontal theta ac-
tivity which was stronger for errors than correct trials. The
frontal theta activity was phase-locked to the button press
and reflects to a large degree the frequency domain repre-
sentations of the magnetic ERN (ERNm). Following errors
we observed a correlation between the increase in frontal
theta activity and the suppression of posterior alpha activ-
ity. This functional connectivity suggests a top-down drive
to perceptual areas setting the state of the brain to mini-
mize errors in subsequent trials.

Alpha Activity Reflects a State

of Reduced Perception

For subjects to perform the Go-noGo task several steps
are required. First, the visual stimulus has to be perceived.
After perceiving the stimulus a decision has to be made
on the action. Finally, the decision should be transformed
into a motor operation or not. One might expect that
errors would be reflected in brain areas directly involved
in decision making [Bray and O’Doherty, 2007; Bray et al.,
2007; O’Doherty et al., 2007]; we found that �10 Hz activ-
ity in visual and sensorimotor areas was predictive of
errors.

It has been suggested that posterior alpha activity
reflects functional inhibition of the visual stream. This is
supported by covert attention and working memory tasks

Figure 4.

The time-locked signals in the postresponse interval. (A) The

ERFs with respect to False Alarms (red) and Hits (blue) for rep-

resentative frontal sensors (marked in white). Button press was

a t ¼ 0 s. (B) The topography of the ERF difference between

False Alarms and Hits (0–0.5 s). Even though the difference was

dominated by frontal sensors, the cluster of sensors represent-

ing the significant difference (P < 0.001; cluster randomization

routine) was large. (C) The difference in TFRs of the ERFs for

False Alarms and Hits. (D) The topography of the difference in

TFRs of the ERFs. Note the frontal distribution of the significant

cluster (P < 0.001; cluster randomization routine).
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demonstrating a stimulus specific alpha decrease of the
specific visual stream engaged in a given task [Jokisch and
Jensen, 2007; Medendorp et al., 2007; Rihs et al., 2007;
Romei et al., 2008a,b; Thut et al., 2003, 2006]. Moreover,
alpha activity in the visual stream not required for the
task is often increased. In addition, it has been shown that
visual discrimination abilities are reduced with an increase
in posterior alpha activity [van Dijk et al., 2008; Zhang
et al., 2008b]. A recent study by Zhang et al. [2008b] found
that prestimulus alpha activity at visual occipital cortical
sites was positively correlated with reaction-times in maca-
que monkeys performing a visuomotor pattern discrimina-
tion task. They interpreted the higher levels of alpha
activity to correspond to less efficient visual stimulus proc-
essing, hence, longer reaction-times. In this study, the
increase in posterior alpha activity and thus functional in-
hibition might result in longer times for perceiving the
stimuli. The longer processing time makes it more difficult
for the subject to suppress the motor response when noGo
stimuli are presented.

The stronger 10 Hz mu activity in sensorimotor areas
predicting response errors is more difficult to explain. The
10 Hz mu activity has been associated with functional in-
hibition of sensorimotor areas. There are a number of
studies that found a clear depression in the central �10
Hz rhythm during motor execution and somatosensory
stimulation [Hari and Salmelin, 1997; Salmelin et al., 1995;
Salmelin and Hari, 1994]. It could be that when subjects
are in the automatic response mode the central �10 Hz
mu activity is relatively high even though motor responses
are executed. The relatively high �10 Hz activity makes
the motor system less responsive to external inputs such
as signals serving to inhibit an automatic motor action. An
alternate explanation could be that the central mu reflects
an automatic, over-learned response mode where cortical
motor areas are less active while subcortical structures are
more engaged. This is consistent with evidence that as a
motor sequence is explicitly learned, the contribution of
the motor cortex execution of the task is reduced while
other brain structures assume more active roles [Pascual-
Leone et al., 1999]. Moreover, Zhuang et al. [1997] have
reported mu increases (relative to baseline) after over-
learning in many of their subjects. Further, we investigated
if the prestimulus oscillatory power correlated with subse-
quent reaction-times on a trial-by-trial basis. We found
that prestimulus alpha activity had no effect on reaction-
times. Moreover, there was no difference in the amplitude
of prestimulus alpha activity when a subset of Hit trials
with fast reaction-times was compared to those of slow
reaction times. Thus, we suggest that alpha activity in the
occipital and motor regions does not directly correspond
to the automization of the motor responses. This leads us
to cautiously conjecture that the high prestimulus mu in
False Alarm trials is likely to be related to more executive
inhibitory processes in which the motor system is less re-
sponsive to inputs from other regions such as signals serv-
ing to inhibit an automatic motor action.

After Error the Brain State Is Altered to Prevent

Subsequent Errors

How do we explain the decrease in occipital and senso-
rimotor alpha and beta band activity following erroneous
button presses? Our interpretation is that the occipital
alpha activity is reduced after an error to engage the vis-
ual system stronger to prevent subsequent errors. The
decrease in occipital alpha is likely to increase the process-
ing accuracy or speed in the visual stream thus allowing
for a faster inhibition of a wrongly initiated button press.
The decrease of the central mu and beta activity after a
wrong key press might reflect that the sensorimotor sys-
tem is becoming further engaged. This stronger engage-
ment can facilitate the inhibition of the motor system if
needed in subsequent trials. Thus, the decrease in occipital
and sensorimotor alpha, mu, and beta activity defines a
more alert brain state facilitating visual processing and
control of the motor system. However, an alternate inter-
pretation could be that the post-error response changes
merely reflect an ‘‘oddball effect’’ related to the processing
of the infrequent target [Mazaheri and Picton, 2005]. This
interpretation could be tested by directly comparing the
brain activity for hits versus correct rejections. This is
however not feasible due to the presence of the motor
response (only in the hits trials) creating a confound.

Functional Connectivity Can Be Studies by

Cross-Frequency Power Correlations

It has been proposed that communication or functional
connectivity between different brain areas can be studied
by means of phase-synchronization between different
brain regions [Varela et al., 2001]. This approach is not
suitable for our data given that frontal and posterior areas
are dominated by power changes in different frequency
bands. Thus, we here use the approach of calculating the
trial-by-trial correlation between different frequency
bands. As for the psychophysical interaction (PPI)
approach [Friston et al., 1997], we were able to identify
significant changes in power correlation with respect to a
cognitive modulation (Fig. 3B). It should be mentioned
that our results cannot be explained by spurious correla-
tions due to cross-talk or volume conduction. The correla-
tions were identified between different frequency bands
and they were long-range between frontal and posterior
(Fig. 3A). Thus, our simple approach provides a novel but
powerful method for investigating functional connectivity
in human electrophysiological data.

Frontal Theta and ERNm Provides a Top-Down

Drive Setting the State of the Brain

After erroneous button presses, the frontal theta activity
became significantly anti-correlated with occipital alpha
activity. Given that frontal theta increase occurs slightly
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earlier than the alpha decrease, it might serve to reflect a
top-down modulation by which oscillatory alpha activity
in visual areas is suppressed. Although we concede that
we have no direct evidence of a causal interaction in our cur-
rent study, such top-down modulation would be consistent
with previous work supporting the role of frontal regions in
executive top-down processes [Miller and D’Esposito, 2005;
Picton et al., 2007; Stuss et al., 2003]. Unfortunately, we had
too few repeated errors to access how the top-down driven
changes in brain activity after a mistake directly would serve
to prevent subsequent errors.

The stronger evoked frontal theta activity following
errors was associated with frontal ERNm [Coles et al.,
2001; Falkenstein et al., 2000]. The theta activity was local-
ized to the frontal regions of the cortex such as left supe-
rior frontal gyrus, left superior medial gyrus, and right
middle frontal gyrus which overlaps with areas found in a
EEG-fMRI study localizing the ERN [Debener et al., 2005].
Interestingly, a recent fMRI study found that activation in
the regions corresponding to the default mode brain net-
work predicted the likelihood of an error [Eichele et al.,
2008]. There is also evidence that frontal theta is negatively
correlated with the default mode network [Scheeringa
et al., 2008]. Thus, it might be that the error related theta
modulates maladaptive brain activity through the suppres-
sion of the default mode network.

CONCLUSION

In summary, by examining the state of the brain before
a stimulus we were able to show that it is possible to pre-
dict lapses of attention before they actually occur. This
supports the case that the state of the brain is important
for how incoming stimuli are processed and for how sub-
jects respond. Our findings also have practical applica-
tions. A lot of effort is being devoted to develop brain
computer interfaces (BCIs) [Lebedev and Nicolelis, 2006].
We suggest that prestimulus activity in the alpha band
can be applied online to predict if subjects are in a state
where errors are more likely to be committed. However, it
must be noted that it remains to be investigated how well
we can predict errors based on single trials data. Some of
the current pathophysiological models pertaining to atten-
tion deficits in clinical groups such as ADHD suggest that
the impaired execute control is related to impaired interac-
tions (i.e. functional connectivity) between brain regions
[Castellanos et al., 2006; Murias et al., 2007]. It would be of
great interest to investigate if the impaired executive con-
trol is reflected as a decrease in functional connectivity as
assessed by reduced correlations between frontal theta and
posterior alpha power.
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Gross J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A,
Salmelin R (2001): Dynamic imaging of coherent sources:
Studying neural interactions in the human brain. Proc Natl
Acad Sci USA 98:694–699.

Hari R, Salmelin R (1997): Human cortical oscillations: A neuro-
magnetic view through the skull. Trends Neurosci 20:44–49.

IFSCN (1974): International Federation of Societies for Clinical
Neurophysiology, A glossary of terms most commonly used by
clinical electroencephalographers. Electroencephalogr Clin Neuro-
physiol 37:538–548.
Jaffard M, Longcamp M, Velay JL, Anton JL, Roth M, Nazarian B,

Boulinguez P (2008): Proactive inhibitory control of movement
assessed by event-related fMRI. Neuroimage 42:1196–1206.

Jokisch D, Jensen O (2007): Modulation of gamma and alpha activ-
ity during a working memory task engaging the dorsal or ven-
tral stream. J Neurosci 27:3244–3251.

Lebedev MA, Nicolelis MA (2006): Brain-machine interfaces: Past,
present and future. Trends Neurosci 29:536–546.

r Prestimulus Activity and Response Inhibition r

r 1799 r



Liljeström M, Kujala J, Jensen O, Salmelin R (2005): Neuro-
magnetic localization of rhythmic activity in the human
brain: A comparison of three methods. Neuroimage 25:734–
745.

Linkenkaer-Hansen K, Nikulin VV, Palva S, Ilmoniemi RJ, Palva
JM (2004): Prestimulus oscillations enhance psychophysical
performance in humans. J Neurosci 24:10186–10190.

Luu P, Tucker DM (2001): Regulating action: Alternating activa-
tion of midline frontal and motor cortical networks. Clin Neu-
rophysiol 112:1295–1306.

Makeig S, Delorme A, Westerfield M, Jung TP, Townsend J,
Courchesne E, Sejnowski TJ (2004): Electroencephalographic
brain dynamics following manually responded visual targets.
PLoS Biol 2:e176.

Manly T, Robertson IH, Galloway M, Hawkins K (1999): The
absent mind: Further investigations of sustained attention to
response. Neuropsychologia 37:661–670.

Maris E, Oostenveld R (2007): Nonparametric statistical testing of
EEG- and MEG-data. J Neurosci Methods 164:177–190.

Mazaheri A, Picton TW (2005): EEG spectral dynamics during dis-
crimination of auditory and visual targets. Brain Res Cogn
Brain Res 24:81–96.

Medendorp WP, Kramer GF, Jensen O, Oostenveld R, Schoffelen
JM, Fries P (2007): Oscillatory activity in human parietal and
occipital cortex shows hemispheric lateralization and memory
effects in a delayed double-step saccade task. Cereb Cortex
17:2364–2374.

Miller BT, D’Esposito M (2005): Searching for ‘‘the top’’ in top-
down control. Neuron 48:535–538.

Murias M, Swanson JM, Srinivasan R (2007): Functional connectiv-
ity of frontal cortex in healthy and ADHD children reflected in
EEG coherence. Cereb Cortex 17:1788–1799.

Nieuwenhuis IL, Takashima A, Oostenveld R, Fernandez G, Jen-
sen O (2008): Visual areas become less engaged in associative
recall following memory stabilization. Neuroimage 40:1319–
1327.

Nolte G (2003): The magnetic lead field theorem in the quasi-static
approximation and its use for magnetoencephalography for-
ward calculation in realistic volume conductors. Phys Med
Biol 48:3637–3652.

O’Doherty JP, Hampton A, Kim H (2007): Model-based fMRI and
its application to reward learning and decision making. Ann N
Y Acad Sci 1104:35–53.

Osipova D, Takashima A, Oostenveld R, Fernández G, Maris E,
Jensen O (2006): Theta and gamma oscillations predict encod-
ing and retrieval of declarative memory. J Neurosci 26:7523–
7531.

Pascual-Leone A, Tarazona F, Keenan J, Tormos JM, Hamilton R,
Catala MD (1999): Transcranial magnetic stimulation and neu-
roplasticity. Neuropsychologia 37:207–217.

Percival DB, Walden AT (1993): Spectral Analysis for Physical
Applications: Multitaper and Conventional Univariate Techni-
ques. Cambridge, UK: Cambridge University Press.

Picton TW, Stuss DT, Alexander MP, Shallice T, Binns MA, Gil-
lingham S (2007): Effects of focal frontal lesions on response
inhibition. Cereb Cortex 17:826–838.

Rihs TA, Michel CM, Thut G (2007): Mechanisms of selective inhi-
bition in visual spatial attention are indexed by alpha-band
EEG synchronization. Eur J Neurosci 25:603–610.

Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J (1997):
‘Oops!’: performance correlates of everyday attentional failures

in traumatic brain injured and normal subjects. Neuropsycho-
logia 35:747–758.

Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut
G (2008a): Spontaneous fluctuations in posterior {alpha}-band
EEG activity reflect variability in excitability of human visual
areas. Cereb Cortex 18:2010–2018.

Romei V, Rihs T, Brodbeck V, Thut G (2008b): Resting electroence-
phalogram alpha-power over posterior sites indexes baseline
visual cortex excitability. Neuroreport 19:203–208.

Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET,
Sharma T, Simmons A, Williams SC, Giampietro V, Andrew
CM, Taylor E (2001): Mapping motor inhibition: Conjunctive
brain activations across different versions of go/no-go and
stop tasks. Neuroimage 13:250–261.

Salmelin R, Hari R (1994): Spatiotemporal characteristics of senso-
rimotor neuromagnetic rhythms related to thumb movement.
Neuroscience 60:537–550.

Salmelin R, Forss N, Knuutila J, Hari R (1995): Bilateral activation
of the human somatomotor cortex by distal hand movements.
Electroencephalogr Clin Neurophysiol 95:444–452.

Scheeringa R, Bastiaansen MC, Petersson KM, Oostenveld R, Nor-
ris DG, Hagoort P (2008): Frontal theta EEG activity correlates
negatively with the default mode network in resting state. Int J
Psychophysiol 67:242–251.

Stemmer B, Vihla M, Salmelin R (2004): Activation of the human
sensorimotor cortex during error-related processing: A magne-
toencephalography study. Neurosci Lett 362:44–47.

Stuss DT, Murphy KJ, Binns MA, Alexander MP (2003): Staying
on the job: The frontal lobes control individual performance
variability. Brain 126(Part 11):2363–2380.

Thut G, Theoret H, Pfennig A, Ives J, Kampmann F, Northoff G,
Pascual-Leone A (2003): Differential effects of low-frequency
rTMS at the occipital pole on visual-induced alpha desynchroni-
zation and visual-evoked potentials. Neuroimage 18:334–347.

Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006): Alpha-
band electroencephalographic activity over occipital cortex
indexes visuospatial attention bias and predicts visual target
detection. J Neurosci 26:9494–9502.

van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008): Presti-
mulus oscillatory activity in the alpha band predicts visual dis-
crimination ability. J Neurosci 28:1816–1823.

Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001): The brain-
web: Phase synchronization and large-scale integration. Nat
Rev Neurosci 2:229–239.

Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006):
The neural bases of momentary lapses in attention. Nat Neuro-
sci 9:971–978.

Yordanova J, Rosso OA, Kolev V (2003): A transient dominance of
theta event-related brain potential component characterizes
stimulus processing in an auditory oddball task. Clin Neuro-
physiol 114:529–540.

Zhang Y, Chen Y, Bressler SL, Ding M (2008a): Response prepara-
tion and inhibition: The role of the cortical sensorimotor beta
rhythm. Neuroscience 156:238–246.

Zhang Y, Wang X, Bressler SL, Chen Y, Ding M (2008b): Prestimu-
lus cortical activity is correlated with speed of visuomotor
processing. J Cogn Neurosci 20:1915–1925.

Zhuang P, Toro C, Grafman J, Manganotti P, Leocani L, Hallett M
(1997): Event-related desynchronization (ERD) in the alpha fre-
quency during development of implicit and explicit learning.
Electroencephalogr Clin Neurophysiol 102:374–381.

r Mazaheri et al. r

r 1800 r


