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ABSTRACT
Brain-derived neurotrophic factor (BDNF) is a biomarker of cognitive function that is released into
the blood stream following exercise, and cognitive function is impaired by environmental
temperatures that are hot and cold. Purpose: To evaluate the exercise-dependent release of BDNF
in different environmental temperatures. Methods: Recreationally trained males each completed
three trials consisting of cycling for 1 h at 60% Wmax at three different temperatures: 33�C (hot), 7�C
(cold), and 20�C (moderate room temperature). Blood was taken from the antecubital vein pre-
exercise, immediately post-exercise, and 3 h post-exercise. Respiratory gases were collected
periodically throughout exercise and recovery. Results: BDNF was elevated immediately following
an exercise bout (1711 § 766 pg·ml¡1) regardless of temperature from pre-exercise (1257 § 653
pg·ml¡1, p D 0.001) and returned to basal levels following 3 h of recovery (1289 § 650 pg·ml¡1,
p D 0.786). There was no effect (p > 0.05) of temperature on BDNF following the exercise bout.
Plasma glucose was elevated in hot (6.2 § 0.9 mmol) over cold (5.3 § 0.6 mmol, p D 0.035) and
moderate room temperature (5.2 § 0.5, p D 0.008). VO2 was elevated during exercise in hot (3.01 §
0.45 L·min¡1) over cold (2.67 § 0.35 L·min¡1, p D 0.005) and moderate room temperature (2.80 §
0.38 L·min¡1, p D 0.001). There was no relationship between BDNF and plasma glucose (p > 0.05) or
VO2 across any time point or temperature (p > 0.05). Conclusion: With aerobic exercise, BDNF is
elevated; however, the release of BDNF is not impacted by different environmental temperatures
during exercise.
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Introduction

Aerobic fitness has been associated with higher
cognitive control in children.1-4 Higher cognitive
function with increasing aerobic function has also
been observed in terms of academic performance
in children.5 In older adults, aerobic fitness posi-
tively correlates with cognitive functions (r > 0.4,
p < 0.05),6 brain volume (p D 0.025),6 and cogni-
tive control (p < 0.05).7 It was previously thought
that any cognitive improvement from aerobic exer-
cise was facilitated by an increase in number of
blood vessels in the brain thereby increasing oxy-
gen delivery to the neurons.8 However, cognitive
function improvements via aerobic exercise can be
attributed to neuronal growth and development as
well.8 Following aerobic training, rats demonstrated
drastic improvement in memory and spatial learn-
ing.9 and improved performance in a Morris water

maze.10 Little is known about the underlying pro-
cesses that facilitate these cognitive improvements.

Improvements in spatial memory and cognitive
function are likely due to neural alterations within the
hippocampus. The hippocampus converts short-term
memories to long-term memories and is the learning
center of the brain.11-14 The hippocampus is the first
site affected by the release of Brain-derived neurotro-
phic factor (BDNF), a powerful neurotrophin in neon-
eurogenesis.15 BDNF may be a key factor in exercise
related cognitive improvement, and further investiga-
tion into the nature of the control pathways of exer-
cise-dependent BDNF response is warranted.

BDNF release also appears to be associated with
metabolic processes and energy management. There is
a 2- to 3-fold increase in BDNF release during exer-
cise,16 elevating from resting levels of serum BDNF
that range from 0.4 ng/ml to 30 ng/ml.17 Furthermore,
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there is an elevation in BDNF production when exoge-
nous glucose is administered to mice in a resting
state,18,19 showing a sensitivity of BDNF to blood glu-
cose. These increases in BDNF release are believed to
be a physiologic response to energy management and
metabolism.18,20 Increases in serum levels of BDNF
are transient, and typically return to baseline levels
within 1 h.16,17

Exercise-dependent BDNF release may alter the
metabolic response to exercise. One potential strategy
to alter metabolic response to exercise is to alter the
environmental temperature.21 PGC-1a is a protein
that has been shown to be responsive to exercise and
further influenced by environmental temperature vari-
ation,22 and BDNF release in the hippocampus as a
result of exercise is thought to be linked to the PGC-
1a pathway.23 Metabolic changes that impact the
PGC-1a pathway may provide a mechanism for
BDNF alterations to exercise and temperature.24 Thus,
it is possible that Exercise-dependent BDNF response
may be influenced via environmental temperature.

The increase in BDNF response to temperature
may also be a compensatory response to cognitive per-
formance in different environmental temperatures.
Significant declines in functional working memory
have been observed when participants are exposed to
passive hyperthermia.25 In addition to short-term
memory effects, heat exposure also affects peripheral
motor function via neural dysfunction.26 Soccer refer-
ees’ decision-making cognitive function has been
shown to be impeded during exposure to cold.27 These
cognitive effects may be the result of stress applied to
the neural circuitry.28 If BDNF response is linked to
environmental stress on the neural system alone, the
exercise-dependent release of BDNF may be elevated
in both hot and cold environmental conditions.

The purpose of this study was to evaluate the effects
of environmental temperature on the exercise-induced
release of BDNF into the blood to determine the nature
of the BDNF response to exercise. It was hypothesized
that BDNF release would increase during the exercise
bout, and that plasma BDNF levels would be affected
by environmental temperature in one of three ways. If
exercise- dependent BDNF response is positively
affected by environmental temperature, it may be
responding to glucose energy management strategies. If
exercise-dependent BDNF response is negatively
affected by environmental temperature, it is likely
dependent on the PGC-1a pathway. Finally, if exercise-

dependent BDNF response is elevated by both hot and
cold conditions, it is likely a compensatory response to
neuronal stress. Determination of an effective tempera-
ture to maximize BDNF release may allow an exercise
intervention to be developed that can enhance neuronal
development.

Methods

Initial visit

Twelve male participants that were considered recrea-
tionally trained completed the study. Participants
completed an Institutional Review Board approved
informed consent form outlining the goal of the study,
experimental procedures, benefits and risks of partici-
pation, and a description of their rights as a volunteer.
Ample time was permitted for participants to read
and understand the consent form, as well as ask any
questions they had. After informed consent was
received, participants were asked to complete a brief
health history form that included risk factors for par-
ticipation of exercise. Each participant’s health history
was reviewed to ensure safe participation in the study.
Upon inclusion, each participant went through a bat-
tery of descriptive exercise tests.

Participants had height, weight, body composition,
and aerobic capacity assessed. Height was taken on a
Seca 213 Stadiometer (United Kingdom), and weight
was taken on a Befour PS-660 ST digital scale (Sauk-
ville, WI) Body fat percentage was determined using
hydrostatic weighing on an electronic load cell-based
system (Exertech, Dresbach, MN) and correcting for
estimated residual lung volume and gastrointestinal
air.29 Participants completely submerged themselves
in a hydrostatic weighing tank, expelled as much air
from their lungs, and remained as still as possible for
3–5 sec while the Exertech system recorded the under-
water weight during each trial. Six to 10 trials were
recorded and the three highest masses were averaged
to calculate body density and derive percent body fat
using the Siri equation.30 After completion of the
hydrostatic weighing session, aerobic capacity was
measured using a graded cycle test.

Aerobic capacity (peak VO2) was determined
using a graded cycle ergometry test to volitional
fatigue on a Velotron cycle ergometer (Racermate,
Seattle, WA). Oxygen consumption was recorded
with a flow and gas calibrated Parvo Medics True
One 2400 Metabolic Measurement System (Sandy,
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UT), and heart rate was continuously monitored
via a Polar (Lake Success, NY) heart rate monitor.
The test started at 95 W and the workload was
increased by 35 W every 3 min until volitional
fatigue. Aerobic capacity (peak VO2) was deter-
mined by the highest recorded 15 sec average value.
Maximum workload (Wpeak) was determined by the
fraction of time completed in the final stage of the
test multiplied by 35 W and added to the workload
of the last completed stage. The intensity for the
experimental trials was set at 60% Wpeak.

Experimental trials

Participants completed three experimental trials at
three different environmental temperatures in a
randomized and counter-balanced order at 60% rel-
ative humidity. The three temperature trials were:
hot (H) at 33�C, cold (C) at 7�C, and moderate
room temperature (RT) at 20�C. Participants kept
a food log 24 h before and an exercise log 48 h
before the first trial and replicated the same diet
and exercise before their second and third trial.
Trials consisted of 1 h of cycling at 60% Wpeak

in a temperature and humidity controlled environ-
mental chamber (Darwin Chambers Company,
St. Louis, MO). These temperatures have been
shown to be safe for extended participant exposure
without unsafe changes in core body temperature.22

Approximately, 1 h before experimental trials
began (55 § 6 min) 125 ml of water, a General
Mills Fiber One bar (Minneapolis, MN), and a
Jonah Core Body Temperature Capsule (Hidalgo
Limited, Cambridge, UK) were ingested to ensure a
normalized hydration and calorie intake before
exercise and to monitor core body temperature
throughout the trial. The core body temperature
data have been previously reported.31 The food
bars consist of 4 g fat, 2 g protein, 29 g carbohy-
drates, and 9 g of dietary fiber. To ensure dietary
intake was not responsible for any variation in
dose response, the same bar was ingested for every
bout. Gas exchange was measured using the same
calibrated metabolic cart at minutes 10–15, 25–30,
40–45, and 55–60 during exercise, and minutes 25–
30, 85–90, and 145–150 post-exercise. The indirect
calorimetry measures were used to determine calo-
ric expenditure and substrate use.32 Participants
were required to consume 125 ml of water after

each gas collection for a total of 500 ml of water
during each exercise trial.

Blood sample analysis

Blood samples were obtained via venipuncture to
the antecubital vein before exercise, immediately
following exercise, and following 3 h of recovery
for each temperature trial. Blood was drawn into
BD Vacutainer tubes with EDTA anticoagulant.
Samples were then spun in a centrifuge at 1000 g
at 4�C for 10 min. Plasma was separated and
stored at ¡80�C for later analysis. For final analy-
sis, plasma was further cleared of platelet rich
plasma by spinning in a centrifuge at 1000 g at
4�C for 10 min. An Enzyme-Linked Immunosor-
bent Assay (ELISA) kit (R&D Systems, Minneapo-
lis, MN) was used to quantify BDNF in the plasma
according to the manufacturer’s instructions. The
manufacturer-reported sensitivity is 20 pg/ml, the
intra-assay CV is 5%, and the inter-assay CV is
11.3%. Samples were analyzed in duplicate with
mean concentrations calculated for statistical analy-
sis. The plasma samples were further analyzed for
glucose levels using Infinity Glucose Hexokinase
reagent (Thermo Scientific, Middletown, Va., USA)
that was evaluated with a Nanodrop 2000c spectro-
photometer (Thermo Scientific) at a 340 nm
wavelength.

Statistical analysis

A repeated measures two-way analysis of variance
(time£trial) was used to analyze the effect that exer-
cise in varying temperatures has on blood glucose lev-
els, VO2, substrate use, and BDNF levels for each of
the trials at each of the time points. If the F-ratio
found a probability of type 1 error of less than 5%
(p < 0.05) it was considered significant and a Fisher’s
protected least significant difference post hoc evalua-
tion was used to determine where the significance
occurred. Correlation analysis was performed to eval-
uate BDNF’s relationship with VO2 and plasma glu-
cose. Finally, linear regression analysis was completed
to check for any predictive nature of the descriptive
data. All statistical data were analyzed via computer
using the Statistical Package for Social Sciences soft-
ware (SPSS 23.0). All data are reported in the text as
mean § SD, and displayed graphically as mean § SE.
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Results

Descriptive data

Twelve participants (age: 25 § 4 yr, height: 178 §
5 cm; weight: 79.2 § 12.8 kg; body fat: 14.5 § 3.5;
VO2peak: 4.29 § 0.82 L ¢ min¡1; Wmax: 276 § 39
W) completed the study. Multiple regression analy-
sis was performed; however, there was no signifi-
cant relationship between any of the descriptive
data and BDNF concentrations at any time point
during any trial (Data not shown).

Plasma BDNF

Plasma BDNF concentrations, regardless of tempera-
ture, increased from 1257 § 653 pg·ml¡1 to 1711 §
766 pg·ml¡1 immediately following an exercise bout
(p D 0.001) and returned to 1289 § 650 pg·ml¡1 fol-
lowing 3 h of recovery time (p D 0.786). No other sig-
nificant differences were noted between trials or
temperatures (p > 0.05), see Figure 1. There was a sig-
nificant moderate relationship between participants’
VO2peak and pre-exercise BDNF concentrations
(p D 0.01), see Figure 2. Similar results were observed
when plasma volume shifts were applied to plasma
BDNF concentrations.

Plasma glucose

There was no difference in plasma glucose between
trials before exercise (p > 0.05). However, plasma glu-
cose was higher immediately post-exercise in H com-
pared with C (p D 0.035) and RT (p D 0.008), see
Figure 3. Plasma glucose was similar immediately

following the exercise bout in the C and RT trials
(p > 0.05). Following 3 h of recovery, plasma glucose
was not different between trials (p > 0.05). There was
no relationship between plasma glucose levels and
BDNF concentrations (p > 0.05), see Figure 4. Similar
results were observed when plasma volume shifts were
applied to plasma glucose. H was greater than C
(p D 0.028) and RT (p D .034) but not between C and
RT (p D 0.524). However, no significance occurred
with interaction effect (p D 0.079).

Oxygen utilization & substrate use

Oxygen uptake during the exercise bout was greater in
H than RT (p D 0.001), and RT was greater than C
(p D 0.005). Oxygen uptake was the same during
recovery for all three temperature trials (p > 0.05), see
Table 1.

Figure 1. BDNF concentrations (pg·ml¡1) at pre-exercise, post-
exercise, and post-recovery time points for hot (H), cold (C), and
moderate room temperature (RT) trials. �p < 0.05, main effect for
post-exercise from pre-exercise and post-recovery.

Figure 2. Interaction of VO2peak (L¢min¡1) and pre-exercise BDNF
concentrations (pg·ml¡1) for hot (H), cold (C), and moderate
room temperature (RT) trials. Regression line is inclusive of all
trials.

Figure 3. Plasma glucose (mmol) at pre-exercise, post-exercise,
and post-recovery time points for hot (H), cold (C), and moderate
room temperature (RT) trials. �p < 0.05 post-exercise H from
both RT and C.
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The exercise carbohydrate oxidation rate during H
was lower than RT (p D 0.023) and trending lower
than the cold trial (p D 0.091). During exercise the
glucose oxidation rate was not different between the
cold and neutral trials (p > 0.05). Glucose oxidation
rates during recovery were the same for all tempera-
ture trials (p > 0.05), see Table 1.

The exercise fat oxidation rate during H was greater
than RT (p D 0.001) and C (p D 0.003). During exer-
cise the lipid oxidation rate was the same between the
cold and neutral trials (p> 0.05). Lipid oxidation rates
during recovery were the same for all temperature tri-
als (p > 0.05), see Table 1.

Discussion

BDNF concentrations increased following the exercise
bout regardless of the temperature of the trial. There
was no effect for different environmental temperatures
on post-exercise BDNF concentrations. There was an

effect of temperature on both post-exercise plasma
glucose and exercise oxygen utilization, two physio-
logic processes that have been linked to BDNF con-
centrations. However, no relationship between BDNF
and plasma glucose or oxygen utilization was noted in
this study.

BDNF’s release during exercise is important because
cognitive function is improved with participation in
physical activity throughout the life-span and BDNF is
thought to be key to that improvement. In children, exec-
utive control of relational memory is related to aerobic
fitness (pD 0.02).1 Furthermore, pre-adolescent students’
aerobic fitness explained 2–5% of variance in academic
performance, but was not associated with physical activ-
ity levels.5 There is also a cognitive benefit to cardiovascu-
lar health on the other end of the life spectrum. Aerobic
fitness has a strong relationship with the preservation of
white brain matter in older adults.33 Also, performance
on tasks requiring greater cognitive control is improved
with participation in exercise.34 These improvements in
cognitive function through exercise are attributed to neu-
ronal growth and synapse improvement.8 BDNF is a key
protein involved in cognitive function management and
synapse improvement.35,36 To understand the nature of
the exercise related improvements in cognitive function,
it is important to understand the nature of the mecha-
nism driving cognitive improvement.

Individual aerobic exercise bouts have a positive
effect on plasma BDNF concentrations,16 which may
indicate that aerobic exercise training may positively
affect basal plasma BDNF concentrations. Blood
BDNF is closely associated with brain BDNF in rats
and pigs, which makes plasma BDNF a viable marker
in brain function.37 Previous research has had varied
results when comparing basal BDNF concentrations
to fitness levels. When comparing cardio-respiratory
fitness (VO2peak) with resting BDNF levels an inverse
relationship was found.17 However, in a training pro-
tocol investigation, it was found that in older adults
the basal BDNF concentrations were elevated in
response to an aerobic training protocol.38 Another
training study found that despite an increase in
VO2peak and max workload there was no effect on rest-
ing BDNF concentrations.39 Additionally, long-term
aerobic exercise training has also been shown to
increase the acute exercise-dependent BDNF response
to an exercise bout.40 In the current study, no relation-
ship was found between VO2peak and plasma BDNF
concentrations at baseline, following the exercise bout,

Figure 4. Interaction of change in plasma glucose (mmol) and
BDNF concentrations (pg·ml¡1) for hot (H), cold (C), and moder-
ate room temperature (RT) trials. Regression line is inclusive of all
trials.

Table 1. Participant oxygen utilization, carbohydrate oxidation,
and fat oxidation during exercise and recovery.

H C RT

Oxygen utilization (L·min¡1)
Exercise 3.01 § 0.45� 2.67§ 0.35� 2.80 § 0.38�

Recovery 0.35 § 0.05 0.32§ 0.07 0.33 § 0.05
Carbohydrate oxidation

(g·min¡1)
Exercise 2.54 § 0.40�y 2.88§ 0.51y 2.98 § 0.40�

Recovery 0.18 § 0.21 0.11§ 0.10 0.13 § 0.20
Fat oxidation (g·min¡1)
Exercise 0.53 § 0.23� 0.26§ 0.20� 0.29 § 0.17�

Recovery 0.11 § 0.08 0.13§ 0.04 0.12 § 0.08

�
p< 0.05 between temperature trials.
yp < 0.10 between temperature trials. Temperature trials were hot (H), cold
(C), and moderate room temperature (RT).
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or following recovery during any temperature trial.
This may be due to a higher aerobic fitness of our par-
ticipants compared with the previously reported
means for VO2peak in the Williams,39 Leckie,41 and
Griffin40 studies (21.5 § 4.7 ml¢kg¡1¢min¡1, 33.8
ml¢kg¡1¢min¡1, and 39.7 § 6.7 ml¢kg¡1¢min¡1,
respectively). There may be a critical level of aerobic
fitness above which BDNF response is maximized and
therefore would account for the differences between
studies.

Beyond the relationship to aerobic fitness, BDNF
has been linked to metabolic energy manage-
ment.42,43 Our protocol altered the metabolic and
energy management responses to exercise via envi-
ronmental temperature manipulation. Contrary to
the proposed hypotheses, a temperature related dif-
ference in exercise-dependent BDNF release was
not discovered, but changes in metabolism across
temperatures did occur, as evidenced by the differ-
ence in exercise VO2 between temperature trials.
Additionally, we have previously reported a signifi-
cant difference in core body temperature during
the final 10 min of the trial.31 Although this study
was unable to find statistical significance in plasma
BDNF between trials, we did note an increase in
plasma BDNF concentrations following exercise in
the heat compared with the other temperatures.
The non-statistically significant elevation in BDNF
concentrations following the exercise bout in the
heat may be related to metabolic energy manage-
ment strategies adopted to compensate for elevated
plasma glucose during exercise in the heat, and
suggests that neuronal growth and synapse
improvement potential was greatest following the
H trial.

To investigate the relationship between BDNF and
energy management strategies, the current study
observed how plasma glucose levels related to the
plasma BDNF concentrations. One role of BDNF in
energy management is an improvement in the hypo-
glycemic effect of insulin.18 The baseline plasma glu-
cose levels were higher than the expected resting level
of 4.0–5.0 mmol. This was likely due to the ingestion
of the fiber bar approximately 45 min before the pre-
exercise blood draw. In this study, there was not a
relationship between plasma glucose. Carbohydrate
oxidation rates were lowest in H when compared with
C and RT, showing a decrease in glucose metabolism
and an increase in plasma glucose levels with no

alteration in plasma BDNF concentrations. The ele-
vated plasma glucose in H trial may be due to a tem-
perature related inhibition of glucose transport out of
the blood via insulin.44 It has been suggested that this
inhibition is due to an increase in skin and visceral
blood flow to regulate temperature that limits blood
flow to tissues, such as muscle and fat, which are sen-
sitive to insulin and are active in glucose absorption.44

An investigation of BDNF concentrations and glucose
metabolism in type II diabetic patients found a strong
relationship between BDNF and immunoreactive
insulin in females,43 suggesting a relationship between
plasma glucose and BDNF concentrations. The mech-
anism is possibly a result of BDNF assisting insulin in
the glucose management process and not BDNF
responding to the process of glucogenesis. However,
this study could not link post-exercise BDNF concen-
trations to post-exercise plasma glucose levels, but this
may have been prohibited by the variability of the
BDNF concentration data and high control of glucose
homeostasis in the current physically active sample.

The high degree of variability of plasma BDNF con-
centrations in our study cannot be attributed to vari-
ance in plasma glucose or aerobic fitness levels. This
variability was expected as basal BDNF levels range
from 400 to 30,000 pg·ml¡1.17 Some of the inter-inves-
tigation variability in BDNF concentrations may also
stem from the blood collection and processing proto-
cols used, as the nomenclature of serum and plasma
are often used interchangeably. However, plasma
BDNF concentrations are 10-fold lower in platelet-
poor plasma than serum.42 This is explained by plate-
lets storing BDNF proteins to be released from an ago-
nistic stimulation.42 In the evaluation of a BDNF
response, it would be undesirable to include BDNF
stored within the platelets as this BDNF is not bio-
available to exert effects. If the plasma separation pro-
cess was not fully completed, plasma BDNF
concentration may be greatly affected. In the current
investigation, whole blood samples were spun in a
centrifuge at 1000 g for 10 min at 4�C. Plasma was
manually separated and stored at ¡80�C for later
analysis. Prior to final analysis, plasma was further
separated from the platelet rich portion by spinning in
a centrifuge at 1000 g for 10 min at 4�C to create
platelet-poor plasma to be analyzed. Any further stud-
ies would benefit from a larger number of participants
to increase the statistical power and the standardized
use of platelet-poor plasma for evaluation.
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Conclusion

This study supports previous findings of an exercise-
dependent release of BDNF. Previous research sug-
gests that cognitive function is inhibited in higher
environmental temperatures25,45 thought to be a result
of neuronal dysfunction.26 However, decreased cogni-
tive function is not always observed depending on the
subjects existing thermal conditions.46 There was not
an effect of temperature on BDNF in the current
study. Since cognitive function is affected by the inges-
tion of carbohydrate rich food via an improvement in
insulin sensitivity and glucose uptake in the brain,47

there is a possibility that the brain follows the same
heat related glucose uptake inhibition pattern as mus-
cle and fat that has been described previously.44 Thus,
the temperature dependent limitations of cognitive
function may be caused by the potential inhibition of
glucose uptake in the brain. Further, mechanistic
research is needed to determine if in fact glucose
uptake by the brain is inhibited in the heat.

Abbreviations
BDNF Brain-derived neurotrophic factor
C Cold
ELISA Enzyme-linked immunosorbent assay
H Hot
PGC-1a Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha
RT Moderate room temperature
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