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Summary
Since the discovery of AMP-dependent protein kinase (AMPK), its fundamental role in regulating metabolic pathways and the

molecular mechanism underlying the regulation of its activity by adenine nucleotides has been widely studied. AMPK is not only an
energy-responsive enzyme, but it also senses redox signals. This review aims at recapitulating the recent lines of evidence that
demonstrate the responsiveness of this kinase to metabolic and nitroxidative imbalance, thus providing new insights into the intimate

networks of redox-based signals upstream of AMPK. In particular, we discuss its well-recognized activation downstream of
mitochondrial dysfunction, debate the recent findings that AMPK is directly targeted by pro-oxidant species, and question alternative
redox pathways that allow AMPK to be included into the large class of redox-sensing proteins. The possible therapeutic implications of
the role of AMPK in redox-associated pathologies, such as cancer and neurodegeneration, are also discussed in light of recent advances

that suggest a role for AMPK in the tuning of redox-dependent processes, such as apoptosis and autophagy.
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Introduction
Living organisms derive energy from the breakdown of the

molecular bonds of nutrients, and then convert it into the more

usable forms of ATP and NADPH (see Box 1). Cell homeostasis

depends on the maintenance of ATP levels, whose hydrolysis can

be coupled to synthesis reactions, transport across membranes and

other endoergonic processes. For this reason, cells actively

synthesize ATP and have evolved molecular mechanisms aimed

at counteracting even slight decreases of ATP (Hardie, 2011). The

mutual regulation of the ATP-regenerating and ATP-consuming

processes, however, does not depend on the concentration of this

single metabolite, but is in response to the energy balance of the

cell (Atkinson, 1970). Indeed, the concentration of ATP, which has

been estimated to range from 1 to 10 mM, can be subjected to

marked variations. Therefore, the absolute intracellular ATP

concentration tightly depends on the concentration of the other

adenylates (adenylate pool) and should be considered as a function

of the adenylate energy charge, which, in accordance to the

definition provided by Atkinson in 1968, is expressed as ([ATP] +

0.5[ADP])/([ATP] + [ADP] + [AMP]) and ranges from 0 to 1

(Atkinson, 1968).

The reversible adenylate-kinase-catalyzed reaction (2[ADP] «
[ATP] + [AMP]) is sufficiently fast in cells to maintain the

reactants at their equilibrium concentrations. Under resting

conditions, in which the adenylate energy charge is close to 1 –

implying that the adenylate pool size is approximately equal to the

ATP concentration (Hardie et al., 2011) – adenylate kinase

catalyzes the reaction in favor of ADP synthesis, thereby

maintaining very low AMP concentrations (approximately one

or two orders of magnitude lower than those of ADP or ATP,

respectively). Under conditions that raise ATP utilization, or upon

metabolic stress that interferes with ATP synthesis, adenylate

kinase shifts the above reaction towards the regeneration of ATP to

increase its concentration and availability. This represents a

valuable tool to rapidly restore ATP concentrations with a

significant increase in AMP levels. Physiologically, the relative

changes in AMP concentrations are much greater than those

occurring to ATP (Ataullakhanov and Vitvitsky, 2002), thereby

making the ratio between AMP and ATP the most reliable

indicator of the cellular energetic state (Fogarty and Hardie, 2010;

Kahn et al., 2005).

AMP-dependent protein kinase (AMPK) senses even small

changes in AMP concentrations, and represents the principal

metabolic gatekeeper of the cell (Hardie, 2011). Upon energetic

imbalance, intracellular concentrations of AMP increase, thus

promoting AMPK activation (Fig. 1). Activated AMPK

stimulates catabolic pathways (e.g. glycolysis and fatty acid

oxidation) and, concomitantly, inhibits the rate of anabolic

reactions (protein, cholesterol, triglyceride and fatty acid

synthesis) to restore the correct adenylate energy charge

(Hardie, 2011).

Although the binding of AMP remains the principal event

triggering the activation of AMPK, recent findings have

demonstrated that ADP also has a role in this process (Oakhill

et al., 2011; Xiao et al., 2011), because it contributes to inhibit

phosphatase-mediated dephosphorylation of AMPK (see below),

for instance by protein phosphatase2 Ca (PP2Ca) (Fig. 1). On the

basis of these results, Oakhill and co-workers suggested that

AMPK is a direct adenylate-charge-sensing protein kinase instead

of a specifically AMP-activated kinase (Oakhill et al., 2011).

Commentary 1

J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

 JCS online publication date 22 May 2012

mailto:filomini@bio.uniroma2.it
mailto:ciriolo@bio.uniroma2.it


In addition to the complex regulation of AMPK by the

adenylate pool, recently, AMPK has been reported to sense and

respond to pro-oxidant conditions that are induced by reactive

oxygen or nitrogen species (ROS and RNS, respectively), thereby

activating a number of cellular processes related to the

modulation of cell viability, such as apoptosis and autophagy

(Poels et al., 2009). This additional feature makes AMPK a

versatile molecular effector in transducing both metabolic and

oxidative stimuli into phosphorylation signals that widely

regulates cell response.

In this Commentary, we give a general overview of the

metabolic regulation of AMPK and provide evidence supporting

a possible redox-based modulation of its activity. We also

highlight how the intracellular redox imbalance could regulate

AMPK activity, independent of the adenylate energy charge

status and attempt to evaluate the implications of this alternative

activation pathway for the induction of processes governing cell

viability and death. We then discuss the impact that apoptosis and

autophagy, induced by redox and metabolic stimuli, can have on

pathological states (neurodegeneration and cancer), in which

AMPK is thought to have a role, and discuss how AMPK-

dependent pathophysiological processes can be driven by both

metabolic and redox signaling networks.

Molecular aspects and metabolic role of AMPK

Metabolic control in higher organisms is subjected to both short-

and long-term variations in nutrients. Nucleotide-based molecules

(e.g. NAD, NADP, ATP) control the activity of many enzymes

through feedback loops, resulting in rapid changes along metabolic

fluxes. Although several energy-regulated proteins contain binding

Box 1. Interconnections between intracellular metabolic flux and redox pathways

Cells require a constant supply of energy to sustain fundamental biological processes. In heterotrophic organisms this energy derives from the

oxidation of nutrients, whose chemical bond breakdown allows electrons to be stored in more useful sinks: NADH and NADPH. NADH is mainly

generated in the tricarboxylic acid (TCA) cycle and provides the electrons needed for the mitochondrial generation of ATP through oxidative

phosphorylation (OXPHOS) (see figure, bottom left). By contrast, the reduction of NADP+ to NADPH mainly occurs in the oxidative branch of the

pentose phosphate pathway, which takes place in the cytosol (see figure, top middle). ATP and NADPH provide the energy and the reducing

equivalents, respectively, to drive the majority of endoergonic processes. However, besides sustaining biosynthetic reactions, ATP and NADPH also

meet the needs of all aerobic organisms to maintain their intracellular redox state. This control is warranted for keeping the balance between the

generation of reactive oxygen species (ROS) – mainly produced by mitochondria – and reactive nitrogen species (RNS), and their elimination

through the synergistic action of the antioxidant enzymes and the thiol-containing antioxidants, such as glutathione (GSH) and thioredoxin (Trx).

Indeed, the GSH and Trx redox systems require ATP as an indispensable factor for their neo-synthesis and NADPH as a source of reductants for

their regeneration (see figure, center). Disruption of redox homeostasis results in the onset of conditions known as ‘nitroxidative stress’, which is

characterized by the accumulation of nitroxidative damage to cellular biomolecules. G6PDH, glucose-6-phosphate dehydrogenase; GCL, glutamate

cysteine ligase; GR, glutathione reductase; GS, glutathione synthetase; GSH, reduced glutathione; GSSG, glutathione disulfide; HK, hexokinase;

NO., nitric oxide; NO–
2/3, nitrites and nitrates; NOS, nitric oxide synthase; PHI, phosphohexose isomerase; RNS, reactive nitrogen species; ROS,

reactive oxygen species; Trx(SH)2, reduced thioredoxin; Trx(S-S), oxidized thioredoxin; TrxR, thioredoxin reductase.
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sites for adenine ribonucleotides, almost all eukaryotes rely upon

AMPK to sense and respond to changes in the adenylate energy

charge (Ghillebert et al. 2011).

AMPK structure and regulation

AMPK is a heterotrimer serine threonine kinase that is composed

of a catalytic a-subunit, and regulatory b- and c-subunits (Hardie,

2007). The a subunit contains the N-terminal serine threonine

kinase domain that also includes the Thr172 residue, whose

phosphorylation by upstream kinases is required for AMPK

activation (Fig. 1), an autoinhibitory domain that is needed to

reduce kinase activity in the absence of AMP (Crute et al., 1998;

Chen, L. et al., 2009), and a C-terminal globular domain, which

binds the b- and c-subunits.

The b-subunit contains a central carbohydrate-binding

molecule (CBM), which allows AMPK to bind glycogen.

Although this does not appear to affect AMPK activity

(Polekhina et al., 2003), recent results indicate that diverse

glycogen mimics act as inhibitors of AMPK, thereby suggesting a

further role of AMPK as a glycogen sensor (McBride et al.,

2009). The b-subunit has been also indicated to be co-

translationally myristoylated at Gly2 residues (Mitchelhill et al.,

1997) and it is essential for phosphorylation of the a-subunit at

Thr172 (Fig. 1) (Oakhill et al., 2011).

The c-subunit contains four tandem sequence repeats termed

the CBS motif (from cystathionine b-synthase, where they were

originally found), which function in pairs to provide four

potential nucleotide binding sites. Two of these bind either
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Fig. 1. Model of structure and regulation of AMPK. AMPK is a heterotrimer comprising an a-subunit that contains the catalytic residue (T172), b- and c-

subunits that have a regulatory role. The b-subunit is myristoylated at G2 residue (orange aliphatic chain), whereas the c-subunit contains four nucleotide binding

sites, two of which bind AMP, ADP or ATP reversibly (site 1 and site 3), one containing a non-exchangeable AMP moiety (site 4), and the last one remaining

unoccupied (site 2). In conditions of high adenylate energy charge (green area of the circle), adenylate kinase (AK) catalyzes the reaction 2ADP « ATP + AMP in

favor of ADP synthesis (top left). AMPK is bound to ATP and inactive (A) owing to the binding of the myristoyl group to a putative myristoyl binding site within

the a-subunit, which renders it inaccessible to being modified. Upon energetic imbalance, AK shifts this reaction generating ATP and AMP (top right).

However, the relative changes in AMP are much greater than those occurring to ATP, because it has been estimated that a 10% variation of ATP levels results in a

more than eightfold change in AMP concentrations. In these conditions, adenylate energy charge decreases (yellow area of the circle), AMP replaces ATP in the c-

subunit (the precise site and mechanism responsible for this are not known) and triggers a myristoyl switch, allowing T172 to be phosphorylated (addition of

phosphate group, PO3
2–) by liver kinase B1 (LKB1) or Ca2+-calmodulin-dependent kinase kinase b (CaMKKb) (B). Maintenance of low adenylate charge

conditions (red area of the circle) establishes a high ratio between AMP and ATP (bottom right) and further allows activation of AMPK by inducing allosteric

effect (up to threefold increase in AMPK activity with respect to the phosphorylated form of the protein), and preventing T172 from being dephosphorylated (gray

box around PO3
2–) (C). Recent observations indicate that ADP binds to site 1 with the same efficiency as AMP, and that this step is fundamental to prevent

phosphatase-mediated dephosphorylation of T172. It has been shown that the half maximal activation of AMPK occurs at an adenylate charge of 0.91

[corresponding to 1678 mM ATP, 284 mM ADP and 38 mM AMP] (see Oakhill et al., 2011), therefore it is reasonable to hypothesize that the contribution of ADP

to retain the activated phosphorylation state of AMPK, at least physiologically, is greater than that of AMP, owing to its higher concentration. Conversely, no

competition between AMP and ADP has been observed for site 3, whose binding to AMP alone underlies its allosteric effect. Induction of ATP synthesis

downstream of AMPK-mediated signaling (bottom left) restores ATP levels, increases adenylate charge (green area of the circle) and allows AMP and ADP to be

replaced with ATP. AMPK is then dephosphorylated by protein phosphatase 2Ca (PP2Ca) and inactivated.
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AMP or ATP reversibly (site 1 and site 3), one contains a non-
exchangeable, tightly bound AMP moiety (site 4), and the last

one (site 2) remains unoccupied (Xiao et al., 2007; Scott et al.,
2004). Recent observations indicate that ADP shows the same
binding constant of AMP for site 3, which is the site that, when
occupied, confers protection against dephosphorylation. As the

concentration of free ADP is between 10- to 400-fold higher than
that of AMP and their binding constants are similar, ADP will be
more successful in competing for site 3 with ATP than AMP.

Conversely, no competition between AMP and ADP has been
observed for site 1, whose binding to AMP alone underlies its
further role of allosteric activator of AMPK (up to threefold

increase in AMPK activity with respect to the phosphorylated
form of the protein).

Biochemical and genetic analyses have revealed that the liver
kinase B1 (LKB1) is the major AMPK-phosphorylating kinase

under condition of energy stress across metazoans (Hardie, 2007).
However, the observation that cells lacking functional LKB1, such
as HeLa cells, are still able to phosphorylate and activate AMPK

led to the identification of Ca2+-calmodulin-dependent kinase
kinase b (CaMKKb) and transforming growth factor-b activated
kinase 1 (TAK1) as further protein kinases involved in its

activation (Hawley et al., 2005; Herrero-Martı́n et al., 2009).

Metabolic targets

The concerted regulation of energy homeostasis by AMPK is

accomplished by phosphorylation events that inhibit the activity of
proteins involved in anabolic pathways and concomitantly activate
those implicated in catabolic routes; these include biosynthetic

enzymes, transporters and ion channels (Hardie, 2007). The first
routes discovered, where AMPK acts as metabolic gatekeeper
under energy-limiting conditions, were the reduction of fatty

acid and cholesterol synthesis by phosphorylation-mediated
inactivation of acetyl-CoA carboxylase 2 (ACC2) and 3-
hydroxy-3-methylglutaryl-coenzyme A reductase, respectively

(Winder and Hardie, 1996), and the stimulation of glucose
uptake and oxidation by inducing the plasma membrane
translocation of glucose transporter 4 (GLUT4) (Kurth-Kraczek
et al., 1999). Later, it became clear that metabolic control is

achieved by multiple mechanisms and occurs through both short-
and long-term effects. For instance, AMPK-mediated activation of
glucose uptake can occur either quickly, through the translocation

of GLUT proteins to the plasma membrane (Kurth-Kraczek et al.,
1999) and by direct activation of GLUT proteins located at the cell
membrane (Barnes et al., 2002), or, as a long-term response

through the enhanced transcription of genes encoding GLUTs,
probably through the engagement of the myocyte enhancer factor-
2 (Zheng et al., 2001). Similarly, the inhibitory phosphorylation of
ACC2 accounts for the short-term regulation of fatty acid

catabolism (Merrill et al., 1997). The long-term effect of AMPK
on fatty acid oxidation is exerted by an increase of mitochondrial
oxidative capacity that is achieved by increasing mitochondrial

biogenesis (Zong et al., 2002; Jager et al., 2007). It is worthwhile
mentioning that the stimulation of fatty acid catabolism is also
induced by inhibition of the lipogenic isoform 1 of ACC (ACC1),

and by downregulation of lipogenic transcription factors, such
as sterol regulatory element-binding protein-1 (SREBP1) and
carbohydrate response element-binding protein, (ChREBP), which

induce the expression of lipogenic and glycolytic genes, including
those encoding ACC1, fatty acid synthase and pyruvate kinase
(Zhou et al., 2001; Kawaguchi et al., 2002).

Overall, activation of AMPK on glucose and lipid metabolism
results in a reduction of the plasma levels of glucose, fatty acids

and triglycerides (Steinberg and Kemp, 2009). The observation
that an AMPK-mediated decrease of plasma glucose occurs
independently of insulin has rendered AMPK an attractive target

for anti-diabetic drugs, because it allows the bypass of defects in
insulin-stimulated glucose uptake in insulin-resistant individuals
(Long and Zierath, 2006; Yu et al., 2010). Similarly, because
insulin insensitivity and hyperlipidaemia are two components of

the metabolic syndrome, AMPK-activating drugs could be
beneficial for patients that are affected by obesity (Winder
et al., 1999), for which only one anti-obesity medication, orlistat,

is currently approved by the US Food and Drug Administration
for long-term use.

Activation of AMPK by nitroxidative stress
Besides the canonical role of AMPK as a metabolic regulator, it

has been recently proposed that pro-oxidant conditions as a
consequence of reduced nutrient availability or hypoxia, or the
selective inhibition of the mitochondrial electron transport chain,
also play a pivotal role in the stimulation of AMPK activity

(Hardie, 2007), as discussed below.

Regulation of AMPK by ROS

Reactive sulfhydryls are cysteine residues that, owing to the
particular chemical environment, can exist in their deprotonated

form at physiological pH. In their thiolate form, cysteines can
easily react with partially reduced species, such as H2O2 or nitric
oxide (NO), to form S-hydroxylated or S-nitrosylated derivatives,

respectively, which can next generate more stable, but still
reversible, disulfide adducts (Fig. 2). These modifications can
alter structure and function of specific proteins that are
commonly named redox-sensing proteins. A decade ago, Choi

and co-workers proposed that AMPK activation coupled with
increased levels of H2O2; however, they did not refer to any
possible cysteine oxidation, but suggested that the ability of H2O2

to activate AMPK was indirect, and occurred as a consequence of
decreased intracellular levels of ATP (Choi et al., 2001). In
agreement, a recent study has demonstrated that overexpression

of the R531G mutant of the AMPK c2-subunit, which is no
longer able respond to AMP or ATP, completely abolishes
AMPK-mediated phosphorylative signaling when the cells were
subjected to oxidative stress, indicating that AMPK activation is

completely independent of redox modifications and depends only
on an intracellular rise in AMP levels (Hawley et al., 2010).

Although the energy imbalance that derives from pro-oxidant
conditions is probably the main means by which increased ROS
generation induces the activation of AMPK in vivo, it has been
demonstrated that under moderate hypoxic conditions, AMPK

activation is elicited in a ROS-dependent manner, but without
appreciable changes in the adenylate pool (Emerling et al., 2009).
This was confirmed by pre-treating cells with antioxidants, which

dampens AMPK activity without altering the ratio between ATP
and AMP. Although these results give strength to the hypothesis
of a direct redox regulation of AMPK, it is worthwhile noting that

overexpression of the R531G mutant of the AMPK c2-subunit to
validate the study has not been done. Moreover, no evidence that
LKB1 and PP2Ca remain unaffected by the antioxidant treatment

has been provided; and the low adenylate energy charge argues
the possibility that AMPK activity could be not directly
modulated by intracellular redox state. Zmijewski and
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co-workers suggest that exposure to H2O2 results in the oxidation

of cysteine residues of the a- and b-subunits of AMPK, which

appears to be sufficient to increase its kinase activity (Zmijewski

et al., 2010). They proposed that mutation of Cys299 of AMPK

decreases its H2O2-mediated activation, whereas mutation of

Cys304 entirely prevents it, suggesting that these two thiols are

involved in the redox control of AMPK activity. In accordance

with these observations, oxidative modifications of AMPK

induce an allosteric rearrangement of the AMPK abc
heterotrimer, thereby facilitating AMP-mediated activation of

the kinase domain (Fig. 3). Nevertheless, also in this case, no

measurement of adenylate activity was provided, leaving the

discussion open for a possible redox dependency of AMPK.

Regulation of AMPK by RNS

Similar to ROS, NO and RNS deriving from it such as

peroxynitrite (ONOO–) have been implicated in AMPK

activation (see below). RNS-dependent stimulation of

phosphorylation by AMPK is mainly related to the ability of

NO to modulate the mitochondrial electron transport chain, and

to negatively affect mitochondrial ATP production (Piantadosi,

2011). Indeed, nanomolar levels of NO are able to induce a

selective and reversible inhibition of cytochrome c oxidase

through the formation of a nitrosyl–heme complex containing

the reduced form of the cytochrome a3, whereas higher

concentrations of RNS can induce S-nitrosylation of cysteines,

or nitration of tyrosine residues of virtually all mitochondrial

complexes (Almeida et al., 2005; Moncada and Bolaños, 2006).

Growing evidence of the past few years also points to the ability

of NO to activate AMPK independently of mitochondrial failure.

For example, Zhang and colleagues demonstrated that NO acts as

an endogenous activator of AMPK in endothelial cells by

increasing Ca2+ levels through the activation of soluble guanylyl

cyclase, the canonical target of NO. NO-induced Ca2+ increase

elicits CaMKKb-mediated AMPK activation (Zhang et al., 2008).

This signaling pathway might be predominant under resting

conditions, because it allows regulation of physiological functions

related to vascular homeostasis (Zhang et al., 2008). Conversely, in

pathological circumstances characterized by overproduction of

ONOO–, it has been reported that ONOO– activates protein kinase

Cf (PKCf) (Xie et al., 2006), which, in turn, phosphorylates

LKB1, leading to the activation of AMPK and the energy-restoring

pathways downstream (Zou et al., 2004; An et al., 2007).

Interestingly, the endothelial isoform of NO synthase (eNOS) is

activated by AMPK through the phosphorylation of Ser1177 (Chen

et al., 1999), indicating that AMPK is also able to regulate RNS

levels by inducing NO production. Therefore, an increase in

AMPK activity under different physiological and pathological

conditions (e.g. stimulation of vascular endothelial growth factor)

can lead to an increase in NO synthesis by eNOS (Reihill et al.,

2007; Levine et al., 2007), which, in turn, could further increase

its production through the AMPK positive-feedback loop.

Importantly, in Nos3–/– mice, the AMPK-activating drug

metformin (Calvert et al., 2008) has no effect on AMPK in

endothelial cells, emphasizing the role of endogenous NO in

activating AMPK and its subsequent consequences on bioenergetic

metabolism (Fig. 3).

S-nitrosylation as a possible regulatory process of

AMPK activity

The impact of NO on cellular metabolism is not only regulated at

the level of NO synthesis, but also through removal of its
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Fig. 2. Reversible nitroxidative modifications of protein thiols. Reactive thiols are cysteine residues, which because of the particular chemical environment, can

exist in their deprotonated form at physiological pH. In their thiolate form, cysteines can easily react with partially reduced species, such as H2O2 or NO to form S-

hydroxylated or S-nitrosylated derivatives, respectively. Such oxidized protein thiols are unstable and tend to react with reduced glutathione (GSH), or with other thiols

(e.g. free cysteine or protein sulphydryls, not indicated in the figure), which leads to the formation of a disulfide bridge and the generation of a more stable, but still

reversible, S-glutathionylated adduct (shown on the right). Hydrogen peroxide and NO can also react directly with GSH to become reduced, but without affecting the

redox state of protein thiols. GSH-dependent H2O2 reduction is catalyzed by glutathione peroxidase (GPx) with the concomitant production of glutathione disulfide

(GSSG). Conversely, NO spontaneously reacts with GSH to form S-nitrosoglutathione (GSNO). S-nitrosoglutathione is in equilibrium with protein nitrosothiols

through trans-nitrosylation reactions, and is fully reduced to NH3 and GSSG through the NADH-dependent reaction catalyzed by GSNO reductase (GSNOR). GPx and

GSNOR both indirectly impact the total level of the reversibly oxidized proteins by directly regulating the concentration of H2O2 and GSNO.
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derivatives, such as S-nitrosothiols (Fig. 2). In particular, S-

nitrosoglutathione (GSNO) reductase (GSNOR) has a pivotal role

in suppressing NO bioactivity by degrading GSNO and reducing

the levels of S-nitrosylated proteins (Liu et al., 2001; Foster et al.,

2009). Although the link between AMPK and eNOS is well

established, no evidence has been provided so far for the putative

relationship between AMPK and GSNOR activity. Given that

nitration and/or S-nitrosylation of mitochondrial respiratory

complexes accounts for impaired ATP synthesis as discussed

above, inhibition of GSNOR could increase the ratio between

AMP and ATP, and then activate AMPK activation. Although

nitrosylative modifications of AMPK have been never described,

it is conceivable that an increase of nitrosylating equivalents,

under conditions of inhibited GSNOR, can promote S-

nitrosylation of Cys299 and Cys304 of the AMPK a-subunit,

the same cysteine residues that are S-glutathionylated by H2O2

(Fig. 3). In this context, it has been recently demonstrated that, in

endothelial cells, AMPK is phosphorylated upon treatment with

different NO donors, and, once activated, phosphorylates IkB

kinase (IKKb) (Bess et al., 2011). This leads to suppression of

NF-kB, and importantly, has been suggested to have a role in the

anti-inflammatory response of NO (Bess et al., 2011). By

contrast, HeLa cells and neurons treated with the same NO

donors show a decrease in the basal levels of phosphorylated

AMPK (Sarkar et al., 2011). Intriguingly, the authors

demonstrate that AMPK phosphorylation relies on the upstream

activation of IKKb – the same kinase thought to be a target of

AMPK in the study by Bess and colleagues – a response that is

entirely dependent on the generation of S-nitrosothiols (Sarkar

et al., 2011). Although both studies indicate that AMPK

phosphorylation is intimately linked to nitroxidative conditions,

they also present potentially conflicting data, illustrating that the

role of S-nitrosylation in modulating AMPK function is still very

much an issue of active debate.

Cellular outcomes in response to metabolic
nitroxidative stress: from survival to death
To overcome metabolic stress induced by pro-oxidant conditions,

AMPK regulates the activity of key enzymes involved in cell

metabolism to guarantee bioenergetics reprogramming, and drives

cell fate by regulating signaling proteins to induce survival or cell

death by different mechanisms, such as autophagy and apoptosis

(Steinberg and Kemp, 2009), as discussed below.

Redox modulation of AMPK activity in autophagy

In addition to promoting the activity of catabolic enzymes and

switching off anabolic pathways, AMPK also maintains cell

viability under prolonged bioenergetic impairment by inducing

autophagy (Mihaylova and Shaw, 2011) (Fig. 4). Autophagy is

the major regulated catabolic mechanism used by eukaryotic cells

to degrade proteins and organelles (Kroemer et al., 2010). It

involves the formation of cytosolic double-membrane vesicles,

called autophagosomes, which sequester portions of the

cytoplasm that are then fused with lysosomes and degraded.

Autophagy has a role in the maintenance of tissue homeostasis

and in the response to environmental stresses; moreover, this

process is often deregulated in various human diseases, such as

neurodegeneration and cancer (Cecconi and Levine, 2008).

Growing evidence supports the idea that redox imbalance

affects autophagy, especially during autophagosome elongation

(Filomeni et al., 2010a). Nonetheless, protease autophagy-related

gene 4 (Atg4) remains the sole example of an autophagic protein

whose redox regulation has been demonstrated to be necessary

for the progression of autophagy (Scherz-Shouval et al., 2007).

AMP
ATP

AMPK
(inactive)

OH O2H2O2
-( (/
ROS

γ

AMP

ATP

LKB1

α
β

P

γ
αβ

CaMKKβ

AMPK
(active)

ONOONO -( (              /
RNS

Mitochondrial
impairment

O2H2

ONOO-NO

GSH

P

γ
ATP

α
β

ON-S

eNOS
P

NO

P

γ
ATP

α
β

GS-S

Oxidation

S-nitrosylation

GSNOR

Antioxidants
(enzymes, reductants)

AMP
ATP

Target proteins
e.g.

Fig. 3. AMPK at the crossroad of metabolic and nitroxidative

networks. The canonical activation of AMPK relies on a double

stimulus; its binding to AMP, whose relative concentration to

ATP is increased under metabolic stress, and the phosphorylation

of its Thr172 residue, which is mediated by the upstream kinases

liver kinase B1 (LKB1) and Ca2+-calmodulin-dependent kinase

kinase b (CaMKKb). In addition to this pathway, nitroxidative

stress can also activate AMPK, with NO and peroxinitrite

(ONOO–), which can then activate CaMKKb and LKB1,

respectively. ROS and RNS can act as positive regulators of

AMPK activity by means of the induction of oxidation or S-

nitrosylation reactions at the level of mitochondrial complexes,

which finally results in a decrease of the ratio between AMP and

ATP. Conversely, GSNOR could negatively regulate AMPK

activation and downstream cell responses by decreasing

mitochondrial S-nitrosothiols, but this has not yet been

demonstrated. AMPK could be directly activated by H2O2 and

NO through the reversible oxidation of cysteine residues. In the

presence of GSH, S-glutathionylated adduct can be formed, which

has been suggested to prime AMPK for phosphorylation. Among

protein targets undergoing phosphorylation and activation by

AMPK is endothelial nitric oxide synthase (eNOS, shown in the

bottom). This induces NO production, thereby generating a

positive-feedback loop with NO both directly and through

CaMKKb (see above). Black arrows, metabolic state-dependent

routes; red arrows, nitroxidative stress-responsive routes; dashed

lines, hypothetical pathways.
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In the past few years, it has been revealed that the main route by

which AMPK promotes autophagy is through inactivation of

the nutrient-sensitive mammalian target of rapamycin (mTOR)

complex I (mTORC1), a complex in which mTOR is bound to its

regulatory protein Raptor. This inactivation allows the dissociation

of mTORC1 from the complex with the autophagy initiator

UNC51-like kinase 1 or 2 (ULK1 or ULK2) (Kroemer et al.,

2010), either by a direct phosphorylation of the mTOR negative

regulator tuberous sclerosis complex 2 (TSC2) at Ser1387 (Inoki et

al., 2006) or by the phosphorylation of Raptor at Ser722 and

Ser792 (Gwinn et al., 2008) (Fig. 4).

AMPK can activate the autophagic machinery under severe

pro-oxidant conditions. For instance, H2O2 activates ataxia-

telangiectasia mutated (ATM) in the cytoplasm, thus suppressing

mTOR activity through stimulation of the ATM–LKB1–AMPK–

TSC2 phosphorylation signaling cascade (Alexander et al., 2010)

(Fig. 4). Moreover, because AMPK can activate ULK1 by direct

phosphorylation of Ser317 and Ser777 (Egan et al., 2011; Kim

et al., 2011) (Fig. 4), it can be speculated that ROS can sustain

the activation of the autophagic machinery through the AMPK–

ULK1 signaling axis, independent of TSC2-mediated inhibition

of mTORC1. Although the established ability of ROS to elicit

autophagy via AMPK and of NO to induce bioenergetic stress

and activate AMPK, only one piece of evidence has been

provided thus far in vitro supporting a causal relationship

between nitrosative stress and autophagy (Sarkar et al., 2011).

Here, treatment with NO donors results in the suppression of

AMPK phosphorylation, thereby inhibiting the autophagic

machinery (Fig. 4). Although this has been shown to rely

completely on S-nitrosylation reactions, no evidence that such

modification occurs directly on AMPK has been provided (Sarkar

et al., 2011). These data indicate that NO acts as a modulator of

autophagy through pathways involving AMPK in some way;

however physiological in vivo systems need to be considered in

the future to better evaluate the relationship between S-

nitrosothiols and AMPK in autophagy.

Redox modulation of AMPK activity in apoptosis

Although AMPK is mainly considered to be a pro-survival kinase,

its involvement in the induction of cell death has also been

demonstrated, mostly in conditions of its sustained activation

(Ronnett et al., 2009; Weisová et al., 2011) (Fig. 5). For instance, it

has been shown that prolonged AMPK activation can result in the

upregulation of the pro-apoptotic BH3-only protein BIM in

neurons (Concannon et al., 2010). Even though the underlying

molecular mechanism(s) has not been identified, Weisová and

colleagues suggested that the engagement of the AMPK–FOXO3A

signaling axis might be responsible for the induction of BIM

(Weisová et al., 2011). This assumption is based on the ability of

the transcription factor FOXO3A to transactivate the BIM gene

promoter in neurons (Biswas et al., 2007), and on the ability of

AMPK to down-modulate the activity of the protein kinase B (also

known as AKT) (Tzatsos and Tsichlis, 2007), which in turn,

is responsible for phosphorylation-mediated inactivation of

FOXO3A (Brunet et al., 1999). Similarly, it has been reported

that, upon severe reduction in ATP levels, AMPK induces cell

death of rat insulinoma INS1 through transcriptional activation of

the pro-apoptotic BH3-only protein BMF (Kilbride et al., 2010).

Moreover, the large amount of data illustrating the ability of

AMPK to activate p53 upon glucose deprivation and to induce its

pro-apoptotic ability (Okoshi et al., 2008), lends further support to

the hypothesis that enduring bioenergetic crisis can be a crucial

factor that couples energy stress with apoptosis induction. AMPK

can also interact with the mitogen-activated protein kinase
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(MAPK) signaling cascade, in particular through activation of p38

MAPK (also known as MAPK14), to mediate apoptosis that is

elicited by both energetic imbalance and pro-oxidant conditions,

such as treatment with H2O2 or UV (Cao et al., 2008), exposure to

flavonoid-generated ROS (Lee et al., 2010) or to mitochondrial

toxins (Filomeni et al., 2011) (Fig. 5). It is noteworthy that,

although AMPK has been established to be an upstream regulator

of p38 MAPK, there is no compelling evidence that this regulation

occurs by direct phosphorylation. Indeed, AMPK elicits

recruitment of p38 MAPK to transforming growth factor TGFb-

activated protein kinase-1-binding protein 1 (TAB1), a scaffold

protein that promotes p38 MAPK auto-phosphorylation (Li et al.,

2005). In summary, AMPK is activated to drive either cell death or

survival, but intriguingly, some of the AMPK targets needed to

propagate this signal through phosphorylation cascades (e.g. p38

MAPK and the Jun N-terminal kinase JNK), have been implicated

in both processes. This suggests that other intermediate modulators

or interactors, which are able to determine whether cell death or

survival pathways predominate, remain to be identified.

Clinical opportunities for AMPK: from cancer
to neurodegeneration
The ability of AMPK to concomitantly regulate multiple bioenergetic

pathways and cell responses to redox changes renders it a feasible

therapeutic target for the treatment of redox- and metabolic-based

diseases (Viollet et al., 2007; Zhou et al., 2009), including cancer and

neurodegenerative disorders as discussed below.

AMPK as a target in anti-cancer therapies

Recently, there has been renewed interest in the potential use of

AMPK for cancer prevention and treatment (Fogarty and Hardie,

2010). Cancer cells differ from untransformed cells after a plethora

of molecular changes, many of which converge into metabolic and

redox reprogramming that aims to sustain their faster rate of growth

and proliferation (Kroemer and Pouyssegur, 2008). Well-established

hallmarks of tumor biology have been described, such as the

metabolic shift in cancer cells from oxidative phosphorylation to

glycolysis under conditions of high oxygen tension (the so-called

aerobic glycolysis, or Warburg effect), and non-physiological

alterations of the intracellular redox state as a result of the

increased production of NO and ROS (Tennant et al., 2010;

Trachootham et al., 2009). Supporting the tight link between

tumorigenesis and metabolic oxidative changes, AMPK has been

implicated in cancer development. Indeed, germline mutations in

the LKB1 tumor suppressor gene, the main activator of AMPK,

have been identified as the genetic cause of the Peutz–Jeghers

syndrome, an inherited predisposition to cancer characterized by the

development of intestinal hamartomatous polyps (Hemminki,

1999), suggesting that impaired AMPK activation could promote

and sustain cancerogenesis. The observation that tumors with

reduced levels of AMPK phosphorylation are indicative of poor

prognostic outcome (Hadad et al., 2009) suggests that loss of AMPK

activity could make tumor cells more aggressive. It has been

demonstrated that several anti-diabetic drugs, such as metformin

and the thienopyridone A769662, delay the growth of spontaneous

and carcinogen-induced tumors in an AMPK-responsive manner

through downregulation of mTORC1 signaling (Anisimov et al.,

2005; Huang et al., 2008). Interestingly, epidemiological studies

indicate that patients with type II diabetes who have been treated

with metformin are found to have a significantly reduced risk of

developing cancer (Bowker et al., 2006; Monami et al., 2011).

Overall, these data point towards a tumor-suppressor role of AMPK

and it has been hypothesized that its activation might represent a

novel strategy for preventing cancer (Fruman and Edinger, 2008).
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In addition to studies that reveal the ability of AMPK
activators to act as anticancer agents, recent data suggests that

AMPK activation also represents a novel and feasible therapeutic
strategy for cancer treatment. For example, chemotherapeutics
have been developed that selectively affect the growth of tumor
cells and their viability by promoting AMPK activation.

Particularly, the methylating drug temozolomide and the cell-
permeable C6 ceramide have been shown to induce apoptosis in
primary cultured human glioblastoma cells and to sensitize

multiple cancer cell lines to doxorubicin by eliciting AMPK
activation (Ji et al., 2010; Zhang et al., 2010). Furthermore, the
observations that the phosphatidylinositol ether lipid analogues

(PIAs) (Memmott et al., 2008), the isatin-Schiff base copper(II)
complexes (Filomeni et al., 2009; Filomeni et al., 2011) and some
nutraceuticals (e.g. curcumin and selenium) (Hwang et al., 2006;
Pan et al., 2008), are able to cause death in various cancer cell

lines by triggering AMPK-dependent apoptosis, further highlight
the potential role of AMPK as a promising target for drugs
reversing, suppressing or preventing carcinogenic progression.

Nevertheless, it is worthwhile noting that, as observed for most
anticancer drugs, AMPK activators might also cause detrimental
side effects. Indeed, AMPK activation by anticancer compounds

has been shown to promote tumor cell survival instead of
cell death owing to activation of AMPK-mediated autophagic
pathways (see below). Several lines of evidence show that

autophagy activation enables long-term survival, keeping cancer
cells alive when limited angiogenesis leads to nutrient
deprivation and hypoxia. AMPK-mediated autophagy appears
to enhance the resistance of cancer cells to chemotherapeutic

agents (e.g. cisplatin), and to naturally occurring molecules (e.g.
polyphenols), which have been considered to be promising
anticancer drugs owing to their ability to induce metabolic

oxidative stress (Harhaji-Trajkovic et al., 2009; Filomeni et al.,
2010b). In light of these results, it is reasonable to consider
that although targeting AMPK remains a feasible approach to

selectively kill tumor cells, the possible activation of AMPK-
mediated pathways mediating tumor resistance, such as
autophagy, should be taken into account.

Dual role of AMPK in neurodegenerative disease

Although AMPK-mediated autophagy might represent the
Achilles’ heel of some chemotherapeutic approaches for the

treatment of proliferative diseases as discussed above (Bhutia
et al., 2010; Yang et al., 2010; Rosenfeldt, and Ryan, 2011), it
could be beneficial in non-renewing tissues, such as neurons

(Mariño et al., 2011). Several observations demonstrate that
AMPK-mediated autophagy has a cytoprotective effect in some
models of neurodegenerative disease, such as Huntington’s and
Alzheimer’s diseases, because it contributes to the removal of

aggregate-prone mutant proteins and to sustaining neuronal
bioenergetics, which is negatively affected under
neurodegenerative-associated pro-oxidant conditions (Spencer

et al., 2009; Wong and Cuervo, 2010; Underwood et al., 2010;
Vingtdeux et al., 2011; Vingtdeux et al., 2010). In support of this
assumption, it has been recently suggested that NO-mediated

inhibition of autophagy, which is associated with AMPK
dephosphorylation, gives rise to a significant increase in
huntingtin-containing aggregates in neurons that express the

mutant form of the protein (Sarkar et al., 2011). However,
although short-term activation of AMPK could mediate an
adaptive neuronal quality control through induction of the

autophagic machinery, its persistent activation is not beneficial
for neurons (Ronnett et al., 2009). In fact, several in vitro studies

indicate that activation of AMPK over longer periods is
harmful. Indeed, the pharmacological activator of AMPK, 5-
aminoimidazole-4-carboxamide-1-b-D-ribofuranoside (AICAR),

was found to be pro-apoptotic in several human and mouse
neuronal cell lines (Garcia-Gil et al., 2003). Moreover, it has
been shown that metformin significantly increases the in vivo

generation of b-amyloid peptide, which has a crucial role in the
pathogenesis of Alzheimer’s disease (Chen, Y. et al., 2009).
Likewise, in vivo studies suggest that AMPK activation that

occurs after cerebral ischemia is detrimental to neuronal survival.
For example, genetic and pharmacological inhibition of AMPK
under these conditions reduces stroke damage (McCullough et al.,
2005; Li et al., 2007), reinforcing the hypothesis that an excessive

and sustained activation of neuronal AMPK when oxygen and
glucose substrates are lacking might induce a ‘metabolic-failure-
like’ state leading to neuronal demise.

Conclusions and Perspectives
In addition to the signaling network upstream of AMPK

activation, which senses and responds to metabolic alterations
in a concerted manner, a growing number of observations have
recently indicated that AMPK can be activated even upon

nitroxidative unbalance. Compelling evidence for whether this
activation is direct, exclusively through cysteine oxidation
without perturbing adenylate energy charge, or indirect,
through the impairment of mitochondrial ATP-generating

machinery, is still limited. However, these findings, and the
novel concepts arising from them, reinforce the concept of the
tight link between cellular (bio)energetics and redox status. They

also open new perspectives with regard to the wide impact
that AMPK can have on cellular processes that rely upon
nitroxidative unbalance, and ultimately, on the role of AMPK in

human pathophysiology. Indeed, AMPK can activate protein
targets that are not restricted to metabolism, but are also
implicated in driving signaling pathways leading to diverse

cellular outcomes, such as apoptosis, proliferation and
autophagy. Along this line, the possible use of drugs that
modulate AMPK activity represents a clinical opportunity for
treatment of diseases that are tightly related to metabolic

dysfunction, and pathological states, such as cancer and
neurodegeneration.
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Bess, E., Fisslthaler, B., Frömel, T. and Fleming, I. (2011). Nitric oxide-induced
activation of the AMP-activated protein kinase a2 subunit attenuates IkB kinase

activity and inflammatory responses in endothelial cells. PLoS ONE 6, e20848.

Bhutia, S. K., Kegelman, T. P., Das, S. K., Azab, B., Su, Z. Z., Lee, S. G., Sarkar, D.

and Fisher, P. B. (2010). Astrocyte elevated gene-1 induces protective autophagy.
Proc. Natl. Acad. Sci. USA 107, 22243-22248.

Biswas, S. C., Shi, Y., Sproul, A. and Greene, L. A. (2007). Pro-apoptotic Bim
induction in response to nerve growth factor deprivation requires simultaneous

activation of three different death signaling pathways. J. Biol. Chem. 282, 29368-
29374.

Bowker, S. L., Majumdar, S. R., Veugelers, P. and Johnson, J. A. (2006). Increased
cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or

insulin. Diabetes Care 29, 254-258.

Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson,

M. J., Arden, K. C., Blenis, J. and Greenberg, M. E. (1999). Akt promotes cell

survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96,
857-868.

Calvert, J. W., Gundewar, S., Jha, S., Greer, J. J., Bestermann, W. H., Tian, R. and

Lefer, D. J. (2008). Acute metformin therapy confers cardioprotection against

myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57, 696-705.

Cao, C., Lu, S., Kivlin, R., Wallin, B., Card, E., Bagdasarian, A., Tamakloe, T.,

Chu, W. M., Guan, K. L. and Wan, Y. (2008). AMP-activated protein kinase
contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J. Biol.

Chem. 283, 28897-28908.

Cecconi, F. and Levine, B. (2008). The role of autophagy in mammalian development:

cell makeover rather than cell death. Dev. Cell 15, 344-357.

Chen, L., Jiao, Z. H., Zheng, L. S., Zhang, Y. Y., Xie, S. T., Wang, Z. X. and Wu,

J. W. (2009). Structural insight into the autoinhibition mechanism of AMP-activated
protein kinase. Nature 459, 1146-1149.

Chen, Y., Zhou, K., Wang, R., Liu, Y., Kwak, Y. D., Ma, T., Thompson, R. C.,

Zhao, Y., Smith, L., Gasparini, L. et al. (2009). Antidiabetic drug metformin
(GlucophageR) increases biogenesis of Alzheimer’s amyloid peptides via up-

regulating BACE1 transcription. Proc. Natl. Acad. Sci. USA 106, 3907-3912.

Chen, Z. P., Mitchelhill, K. I., Michell, B. J., Stapleton, D., Rodriguez-Crespo, I.,

Witters, L. A., Power, D. A., Ortiz de Montellano, P. R. and Kemp, B. E. (1999).
AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS

Lett. 443, 285-289.

Choi, S. L., Kim, S. J., Lee, K. T., Kim, J., Mu, J., Birnbaum, M. J., Soo Kim, S. and

Ha, J. (2001). The regulation of AMP-activated protein kinase by H(2)O(2).
Biochem. Biophys. Res. Commun. 287, 92-97.

Concannon, C. G., Tuffy, L. P., Weisová, P., Bonner, H. P., Dávila, D., Bonner, C.,

Devocelle, M. C., Strasser, A., Ward, M. W. and Prehn, J. H. (2010). AMP kinase-

mediated activation of the BH3-only protein Bim couples energy depletion to stress-
induced apoptosis. J. Cell Biol. 189, 83-94.

Crute, B. E., Seefeld, K., Gamble, J., Kemp, B. E. and Witters, L. A. (1998).
Functional domains of the alpha1 catalytic subunit of the AMP-activated protein

kinase. J. Biol. Chem. 273, 35347-35354.

Egan, D. F., Shackelford, D. B., Mihaylova, M. M., Gelino, S., Kohnz, R. A.,

Mair, W., Vasquez, D. S., Joshi, A., Gwinn, D. M., Taylor, R. et al. (2011).
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects

energy sensing to mitophagy. Science 331, 456-461.

Emerling, B. M., Weinberg, F., Snyder, C., Burgess, Z., Mutlu, G. M., Viollet, B.,

Budinger, G. R. and Chandel, N. S. (2009). Hypoxic activation of AMPK is

dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio.
Free Radic. Biol. Med. 46, 1386-1391.

Filomeni, G., Piccirillo, S., Graziani, I., Cardaci, S., Da Costa Ferreira, A. M.,

Rotilio, G. and Ciriolo, M. R. (2009). The isatin-Schiff base copper(II) complex

Cu(isaepy)2 acts as delocalized lipophilic cation, yields widespread mitochondrial
oxidative damage and induces AMP-activated protein kinase-dependent apoptosis.

Carcinogenesis 30, 1115-1124.

Filomeni, G., Desideri, E., Cardaci, S., Rotilio, G. and Ciriolo, M. R. (2010a). Under

the ROS…thiol network is the principal suspect for autophagy commitment.
Autophagy 6, 999-1005.

Filomeni, G., Desideri, E., Cardaci, S., Graziani, I., Piccirillo, S., Rotilio, G. and

Ciriolo, M. R. (2010b). Carcinoma cells activate AMP-activated protein kinase-

dependent autophagy as survival response to kaempferol-mediated energetic
impairment. Autophagy 6, 202-216.

Filomeni, G., Cardaci, S., Da Costa Ferreira, A. M., Rotilio, G. and Ciriolo, M. R.

(2011). Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2]

triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated

protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-
bromopyruvate in neuroblastoma treatment. Biochem. J. 437, 443-453.

Fogarty, S. and Hardie, D. G. (2010). Development of protein kinase activators:
AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804,
581-591.

Foster, M. W., Hess, D. T. and Stamler, J. S. (2009). Protein S-nitrosylation in health
and disease: a current perspective. Trends Mol. Med. 15, 391-404.

Fruman, D. A. and Edinger, A. L. (2008). Cancer therapy: staying current with AMPK.
Biochem. J. 412, e3-e5.

Garcia-Gil, M., Pesi, R., Perna, S., Allegrini, S., Giannecchini, M., Camici, M. and
Tozzi, M. G. (2003). 59-aminoimidazole-4-carboxamide riboside induces apoptosis in
human neuroblastoma cells. Neuroscience 117, 811-820.

Ghillebert, R., Swinnen, E., Wen, J., Vandesteene, L., Ramon, M., Norga, K.,
Rolland, F. and Winderickx, J. (2011). The AMPK/SNF1/SnRK1 fuel gauge and
energy regulator: structure, function and regulation. FEBS J. 278, 3978-3990.

Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A.,
Vasquez, D. S., Turk, B. E. and Shaw, R. J. (2008). AMPK phosphorylation of
raptor mediates a metabolic checkpoint. Mol. Cell 30, 214-226.

Hadad, S. M., Baker, L., Quinlan, P. R., Robertson, K. E., Bray, S. E., Thomson, G.,

Kellock, D., Jordan, L. B., Purdie, C. A., Hardie, D. G. et al. (2009). Histological
evaluation of AMPK signalling in primary breast cancer. BMC Cancer 9, 307.

Hardie, D. G. (2007). AMP-activated/SNF1 protein kinases: conserved guardians of
cellular energy. Nat. Rev. Mol. Cell Biol. 8, 774-785.

Hardie, D. G. (2011). AMP-activated protein kinase: an energy sensor that regulates all
aspects of cell function. Genes Dev. 25, 1895-1908.

Hardie, D. G., Carling, D. and Gamblin, S. J. (2011). AMP-activated protein kinase:
also regulated by ADP? Trends Biochem. Sci. 36, 470-477.

Harhaji-Trajkovic, L., Vilimanovich, U., Kravic-Stevovic, T., Bumbasirevic, V. and

Trajkovic, V. (2009). AMPK-mediated autophagy inhibits apoptosis in cisplatin-
treated tumour cells. J. Cell. Mol. Med. 13, 3644-3654.

Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M.,

Frenguelli, B. G. and Hardie, D. G. (2005). Calmodulin-dependent protein kinase
kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell

Metab. 2, 9-19.

Hawley, S. A., Ross, F. A., Chevtzoff, C., Green, K. A., Evans, A., Fogarty, S.,

Towler, M. C., Brown, L. J., Ogunbayo, O. A., Evans, A. M. et al. (2010). Use of
cells expressing gamma subunit variants to identify diverse mechanisms of AMPK
activation. Cell Metab. 11, 554-565.

Hemminki, A. (1999). The molecular basis and clinical aspects of Peutz-Jeghers
syndrome. Cell. Mol. Life Sci. 55, 735-750.

Herrero-Martı́n, G., Høyer-Hansen, M., Garcı́a-Garcı́a, C., Fumarola, C., Farkas, T.,
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