
In 1964, a team of pharmaceutical prospectors from 
Ayerst Research Laboratories struck microbial gold in a 
soil sample from the island of Rapa Nui (Easter Island). 
From a Streptomyces hygroscopicus soil bacterium, 
Sehgal and colleagues isolated a novel macrolide with 
potent antifungal activity, which they named ‘rapamycin’ 
in deference to its place of origin1. Subsequent studies 
of rapamycin elaborated on its immunosuppressive, 
antitumour and neuroprotective properties, generating 
significant clinical excitement2–4. Nonetheless, its mecha­
nism of action remained elusive for more than 20 years 
until a series of breakthroughs in the early 1990s cracked 
open both the mystery of rapamycin and one of the most 
important signalling networks in biology.

In 1990, Schreiber and colleagues demonstrated that 
rapamycin acts in part by binding the prolyl-​isomerase 
FKBP12 to form a gain-​of-function complex that broadly 
inhibits cell growth and proliferation5,6. However, the full 
mechanism of action of rapamycin was only elucidated 
in 1994, when three groups used biochemical affinity 
purification of the FKBP12–rapamycin complex to iden­
tify a large kinase as the mechanistic (originally ‘mam­
malian’) target of rapamycin (mTOR) in mammals7–9. 
This discovery also revealed homology between mTOR 
and the yeast TOR/DRR proteins, which had previously 
emerged as rapamycin targets in genetic screens for 
rapamycin resistance10–13.

As intimated by the profound effects of rapamycin 
treatment, we now know that the mTOR protein kinase 
lies at the nexus of many major signalling pathways and 
plays a key part in organizing the cellular and organis­
mal physiology of all eukaryotes. In the two and a half 
decades since its discovery, mTOR has emerged as the 
central node in a network that controls cell growth. 
As such, it integrates information about the availability 

of energy and nutrients to coordinate the synthesis or 
breakdown of new cellular components. Dysregula­
tion of this fundamental signalling pathway disrupts 
cellular homeostasis and may fuel the overgrowth of 
cancers and the pathologies associated with ageing and 
metabolic disease.

In this Review, we analyse the signalling landscape of 
the mTOR pathway, from the inputs that regulate mTOR 
activation to the downstream effectors that enact its pro-​
growth programmes. In particular, we highlight how the 
intimate association between mTOR and the lysosome 
can facilitate rapid mobilization of nutrients upon stress 
or starvation. We then discuss how the mTOR pathway 
responds to metabolic signals in diverse organisms, cell 
types and tissues. Finally, drawing on recent advances in 
our understanding of mTOR pathway structure and func­
tion, we examine pharmacological approaches that tar­
get the pathway and evaluate their therapeutic potential 
in the treatment of metabolic disease, neurodegeneration, 
cancer and ageing.

Architecture of mTORC1 and mTORC2
mTOR is a 289-kDa serine/threonine protein kinase 
in the PI3K-​related protein kinases (PIKK) family14. In 
mammals, it constitutes the catalytic subunit of two dis­
tinct complexes known as mTOR complex 1 (mTORC1) 
and mTORC2. These complexes are distinguished by 
their accessory proteins and their differential sensitivity 
to rapamycin, as well as by their unique substrates and 
functions (Fig. 1a).

mTORC1 is nucleated by three core components: 
mTOR, mammalian lethal with SEC13 protein 8 (mLST8, 
also known as GβL)15 and its unique defining sub­
unit, the scaffold protein regulatory-​associated protein  
of mTOR (RAPTOR)16,17 (Fig. 1b). While structural data 
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suggest that mLST8 may stabilize the kinase domain 
of mTOR18, ablation of this protein does not affect 
phosphorylation of known mTORC1 substrates in vivo19. 
Meanwhile, RAPTOR is essential for proper subcellu­
lar localization of mTORC1 and can recruit substrates 
of mTORC1 by binding the TOR signalling motifs that 

are present on several canonical mTOR substrates20,21. 
In addition, RAPTOR forms a scaffold for the mTORC1 
accessory factor proline-​rich AKT substrate 40 kDa 
(PRAS40)22,23, which acts as an endogenous inhibitor of 
mTORC1 activity alongside DEP-​domain-containing 
mTOR-​interacting protein (DEPTOR)24.
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Fig. 1 | Structure and function of mTORC1 and mTORC2. a | mTOR complex 1 (mTORC1) and mTORC2 have distinct 
signalling roles in the cell. mTORC1 integrates information about nutritional abundance and environmental status to tune 
the balance of anabolism and catabolism in the cell, while mTORC2 governs cytoskeletal behaviour and activates several 
pro-​survival pathways. Unlike mTORC1, which is acutely inhibited by rapamycin, mTORC2 responds only to chronic 
rapamycin treatment. b | Components of mTORC1 (left). The domain structure of the mTOR kinase (green) is annotated 
with binding sites for the other mTORC1 subunits. The N-​terminus of mTOR contains clusters of huntingtin, elongation 
factor 3, a subunit of protein phosphatase 2A and TOR1 (HEAT) repeats, followed by a FRAP, ATM and TRRAP (FAT) domain; 
the FKBP12–rapamycin binding (FRB) domain; the catalytic kinase domain; and the C-​terminal FATC domain. mTOR  
binds mammalian lethal with SEC13 protein 8 (mLST8), a core component of the complex, and DEP-​domain-containing 
mTOR-​interacting protein (DEPTOR), an endogenous inhibitor of mTORC1 activity. Regulatory-​associated protein of mTOR 
(Raptor), the defining subunit of mTORC1, binds mTOR with its own HEAT repeats and is required for lysosomal localization 
of the complex. Raptor also recruits proline-​rich AKT substrate 40 kDa (PRAS40), an insulin-​regulated inhibitor of mTORC1 
activity. A 5.9-Å reconstruction of mTORC1 (without PRAS40 and DEPTOR) complexed with FKBP12–rapamycin is shown 
as a surface representation (Protein Database (PDB) ID: 5FLC) (right). c | Components of mTORC2 (left). The mTOR kinase 
(green) is annotated with the binding sites for the other constituent subunits of mTORC2. These subunits include mLST8, 
DEPTOR and RICTOR, the defining component of mTORC2. As a scaffolding protein, RICTOR recruits protein associated 
with rictor 1 or 2 (PROTOR1/2) to the complex, along with MAPK-​interacting protein (mSIN1), which contains a pleckstrin 
homology domain. A 4.9-Å reconstruction of mTORC2 (without DEPTOR and PROTOR) is shown as a surface representation 
(PDB: 5ZCS) (right).
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In the past decade, structural studies have shed new 
light on the assembly and catalysis of mTORC1. Cryo-​
electron microscopy and crystallographic analyses 
have revealed that mTORC1 dimerizes to form a mega­
Dalton ‘lozenge’, with dimerization occurring along the 
mTOR HEAT repeats and the mTOR–RAPTOR inter­
face25,26. In isolation, this complex is relatively inactive; 
a recent structure suggests that key residues in the 
kinase domain of mTOR may only shift into a catalytic 
position after the complex binds its essential activator, 
the small GTPase Rheb27. Similar co-​crystallization 
approaches have also established the basis of mTORC1 
inhibition by FKBP12–rapamycin and PRAS40, both of  
which bind the FKBP12–rapamycin binding domain 
of mTOR to partially occlude substrate entry into the 
kinase active site18,27. Further structural analysis of 
mTORC1 in the presence of its substrates and regu­
lators may offer additional insights into the mTORC1 
mechanism and function.

In contrast to mTORC1, mTORC2 retains the abi­
lity to phosphorylate its substrates upon acute rapamy­
cin treatment. As with mTORC1, the core of mTORC2 
is formed by mTOR and mLST8, the latter of which is 
required for mTORC2 stability and function19,28 (Fig. 1c). 
In lieu of RAPTOR, however, mTORC2 is defined by the 
unrelated scaffolding protein RICTOR29,30, which binds 
MAPK-​interacting protein 1 (mSIN1)31–33, DEPTOR 
(as in mTORC1)24 and protein associated with rictor 1 
or 2 (PROTOR1/2) to form the complex34,35. Of note, 
mSIN1 has a phospholipid-​binding pleckstrin homo­
logy domain, which may help mTORC2 assemble on the 
plasma membrane36. Recent cryo-​electron microscopy 
reconstructions of mTOR bound to mLST8, RICTOR 
and mSin1 show that mTORC2 also dimerizes to adopt a 
‘lozenge’ shape37,38. These structures further suggest that 
RICTOR blocks the FKBP12–rapamycin complex bind­
ing site on mTOR, thereby rendering mTORC2 insen­
sitive to acute inhibition by rapamycin. Nonetheless, 
prolonged rapamycin treatment can inhibit mTORC2 
signalling by sequestering the cellular pool of mTOR 
into rapamycin-​bound complexes that cannot nucleate 
new mTORC2 (refs39,40).

Functions of the mTOR signalling pathway
Activation of mTOR marks cellular entry into a ‘growth’ 
regime characterized by increases in both cell size and 
cell number. To keep pace with metabolic demand in 
these growing cells, mTORC1 and mTORC2 initiate 
biosynthetic cascades to support anabolism and cell 
proliferation.

Roles of mTORC1
mTORC1 phosphorylates substrates that increase the 
production of proteins, lipids, nucleotides and ATP 
while limiting autophagic breakdown of cellular com­
ponents. Here, we review the major substrates and 
effectors downstream of mTORC1 (Fig. 2a). Many of 
these effectors were first identified through phospho­
proteomic analyses in rapamycin-​treated mammalian 
cell lines. However, this approach is far from compre­
hensive: mTORC1 function is exquisitely sensitive to the 
physiological and pharmacological context, and certain 

mTORC1 substrates are resistant to inhibition by rapa­
mycin41–43. We posit that future studies using novel and 
specific mTORC1 inhibitors may uncover additional 
substrates and mTORC1-dependent processes.

Activation of protein synthesis. Protein synthesis is the 
most energy-​intensive and resource-​intensive process 
in growing cells44. It is therefore tightly regulated by 
mTORC1, which promotes protein synthesis by phos­
phorylating the eukaryotic initiation factor 4E-​binding 
proteins (4E-​BPs) and p70 S6 kinase 1 (S6K1) (Fig. 2a). 
In its unphosphorylated state, 4E-​BP1 suppresses trans­
lation by binding and sequestering eukaryotic translation 
initiation factor 4E (eIF4E), an essential component of 
the eIF4F cap-​binding complex. Upon phosphorylation 
by mTORC1, 4E-​BP1 releases eIF4E and enhances 5′  
cap-​dependent translation of mRNAs45–47.

In concert with PDK, which phosphorylates the 
activation loop (T229), mTORC1 phosphorylates S6K1 
on its hydrophobic motif (T389) to stimulate kinase 
activity48,49 (Fig. 2a). S6K1 subsequently phosphorylates 
its namesake target, ribosomal protein S6, a component 
of the 40S subunit. The function of S6 phosphorylation 
remains ambiguous: ablation of all five phosphorylation-​
target serine residues on S6 does not impair organismal 
viability or translation efficiency50, although some 
evidence suggests that S6 phosphorylation may pro­
mote transcription of genes involved in ribosomal 
biogenesis51. More directly, S6K1 and mTORC1 upregu­
late transcription of rRNA, the dominant component of 
newly-​assembled ribosomes, by enhancing the activity 
of RNA polymerase I and RNA polymerase III through 
phosphorylation of the regulatory factors upstream 
binding factor (UBF)52, transcription initiation factor 
1A (TIF-1A)53 and MAF1 (refs54,55). S6K1 also enhances 
protein synthesis by activating eIF4B (ref.56), a posi­
tive regulator of cap-​dependent translation, and by 
degrading the eIF4A inhibitor programmed cell death 4 
(PDCD4)57. In addition, S6K1 associates with SKAR at 
exon junction complexes to boost the rate of translation 
elongation in spliced transcripts58 (Fig. 2a).

Although 4E-​BP1 and S6K1 both contribute to the 
regulation of global translation, recent evidence indi­
cates that 4E-​BP1 has a more prominent role. Deletion of  
S6K1 in mouse liver and muscle cells does not reduce 
global translation59,60; likewise, rapamycin treatment, 
which preferentially inhibits S6K1 over 4E-​BP1, produces 
only a weak effect on global translation. By contrast, 
transcriptome-​scale ribosome profiling reveals that 
mTOR inhibition dramatically suppresses translation of 
mRNAs carrying 5′ terminal oligopyrimidine motifs in 
a 4E-​BP-dependent manner61,62. These terminal oligo­
pyrimidine transcripts encode much of the translation 
machinery, including ribosomal proteins, suggesting 
yet another route by which mTORC1 may modulate 
protein synthesis.

Biomass accumulation: lipid and nucleotide synthesis and 
energetic homeostasis. As cells increase in size, they must 
generate lipids to sustain biogenesis of new membranes. 
Accordingly, mTORC1 drives lipid synthesis through two 
axes centred on the transcription factors sterol regulatory 
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element binding protein 1/2 (SREBP1/2) and peroxisome 
proliferator-​activated receptor-​γ (PPARγ) (Fig. 2a). When 
sterol levels are low, the SREBPs translocate from the 
endoplasmic reticulum membrane to the nucleus, where 
they upregulate genes for de novo lipid and cholesterol 
synthesis63. Activated mTORC1 promotes this SREBP 

transcriptional programme by phosphorylating the 
SREBP inhibitor lipin 1 to exclude it from the nucleus64. 
Although the mechanism remains unclear, mTORC1 may 
also enhance the nuclear translocation and processing of 
the SREBPs in an S6K1-dependent manner65,66 (Fig. 2b). 
In addition, inhibition of mTORC1 has been shown 

mTORC2

mTORC1

4E-BP S6K1

eIF4E eIF4B PDCD4 SKAR

eIF4A

5′ cap-dependent
translation

Translation of
spliced transcripts

S6 TIF-1A
UBF

MAF1

Pol I Pol III

Ribosome
biogenesis

Protein synthesis

ULK1
ATG13

TFEB
TFE3

UVRAG

Lysosome
biogenesisAutophagy

Catabolism

ATF4

MTHFD2

S6K1

CAD

Lipin-1

SREBPs

Nucleotide
synthesis

NADPH

PPARγ

HIF1α

Glycerol

Lipid synthesis
Aerobic

glycolysis

Metabolism

Nucleus

ATF4 ATF4

TFEB TFEB

SREBP

HIF1α

PGC1α

SREBP

HIF1α

PGC1α

Stress

Low lysosome number

Low sterols

Hypoxia

Energetic stress

FOXO1/3a FOXO1/3a

Cytoskeletal
rearrangement

and mobility

mTORC2

PKC Akt SGK

TSC2

mTORC1

NADK

Anabolic
metabolism

GSK3b FOXO1/3a

Glucose
homeostasis

Apoptosis

Ion
transport

a

cb

Apoptosis

Adaptive metabolism

Lysosome biogenesis

Lipid synthesis

Glycolysis

Mitochondrial biogenesis

mTORC1 mTORC1 mTORC1

Fig. 2 | Targets of mTORC1 and mTORC2 signalling. a | mTOR complex 1 (mTORC1) activation initiates a downstream 
anabolic programme that enhances the production of proteins, lipids, nucleotides and other macromolecules while 
inhibiting catabolic processes, such as autophagy and lysosome biogenesis. b | By regulating the expression or nuclear 
localization of transcription factors, mTORC1 and mTORC2 control the expression of genes that promote organelle 
biogenesis or alter metabolic flux through biosynthetic pathways. Although these transcription factors can be 
independently activated by specific, acute cellular stress signals (for example, hypoxia inducible factor 1α (HIF1α) can be 
directly activated by hypoxia and ATF4 can be directly activated by endoplasmic reticulum stress), mTORC1 and mTORC2 
toggle the activation of these factors in a coordinated manner to support growth and proliferation. Thus, activation of 
mTORC1 can simultaneously activate ATF4, the sterol regulatory element binding proteins (SREBPs), HIF1α and yin–yang 1 
(YY1)−peroxisome proliferator-​activated receptor-​γ (PPARγ) coactivator 1α (PGC1α) to drive diverse processes involved in 
cellular growth, all while blocking lysosomal biogenesis through transcription factor EB (TFEB). c | mTORC2 activates the 
AGC family kinases protein kinase C (PKC), Akt and serum- and glucocorticoid-​induced protein kinase (SGK) to regulate 
the cytoskeleton, metabolism and ion transport and promote cell survival. CAD, carbamoyl-​phosphate synthetase 2, 
apartate transcarbamoylase, dihydroorotase; 4E-​BP, 4E-​binding protein; eIF4, eukaryotic translation initiation factor 4; 
GSK3b, glycogen synthase kinase 3b; MTHFD2, methylenetetrahydrofolate dehydrogenase 2; PDCD4, programmed cell 
death 4; Pol I/Pol III, RNA polymerase I/RNA polymerase III; S6K1, p70 S6 kinase 1; TFE3, transcription factor E3; TIF-1A, 
transcription initiation factor 1A; TSC2, tuberous sclerosis complex 2; UBF, upstream binding factor; ULK1, unc-51-like 
autophagy-​activating kinase 1.

www.nature.com/nrm

R e v i e w s

186 | April 2020 | volume 21	



to impair the expression of lipid homeostasis genes  
controlled by the nuclear receptor PPARγ67.

To maintain DNA replication and rRNA synthesis 
in proliferating cells, mTORC1 regulates the supply 
of one-​carbon units for nucleotide biosynthesis. 
Recent work has shown that mTORC1 activates the 
transcription factor ATF4 and its downstream target, 
mitochondrial tetrahydrofolate cycle enzyme methylene­
tetrahydrofolate dehydrogenase 2 (MTHFD2), to drive 
de novo purine synthesis68. Through its effector S6K1, 
mTORC1 also promotes phosphorylation and activa­
tion of carbamoyl-​phosphate synthetase 2, aspartate 
transcarbamoylase, dihydroorotase (CAD), the rate-​ 
limiting enzyme in pyrimidine biosynthesis69,70. This 
mTORC1-dependent tuning of the nucleotide pool is 
crucial for anabolic balance and homeostasis. Indeed, 
in cells in which mTORC1 is hyperactive, uncoupling 
nucleotide biogenesis from nucleotide demand with a 
guanylate synthesis inhibitor leads to DNA damage, as 
limiting nucleotides are preferentially funnelled into 
rRNA to sustain high rates of ribosomal biogenesis and 
protein synthesis71. Because mTORC1 dysregulation is 
a signature of many cancers, inhibition of nucleotide 
synthesis may allow us to selectively target a metabolic 
vulnerability in transformed cells.

Besides its direct effects on biosynthetic enzymes, 
mTORC1 also potentiates growth by dictating large-​
scale changes in the metabolic fates of glucose. To gene­
rate energy and carbon units, mTORC1 upregulates the 
transcription factor hypoxia inducible factor 1α (HIF1α),  
which increases expression of glycolytic enzymes and 
favours glycolysis over oxidative phosphorylation66,72 
(Fig.  2a,b). mTORC1-dependent activation of the 
SREBPs also increases flux through the pentose phos­
phate pathway, providing NADPH and carbon-​rich 
precursors for lipid and nucleotide synthesis66. Finally, 
because biomass accumulation demands vast reserves 
of energetic currency, mTORC1 enhances trans­
lation of nuclear-​encoded mitochondrial transcripts 
through 4E-​BP1 to expand the ATP production capa­
city of the cell73. mTORC1 may additionally stimulate 
mitochondrial biogenesis by driving formation of the 
yin–yang 1 (YY1)−PPARγ coactivator 1α (PGC1α)  
transcriptional complex74.

Repression of catabolism and autophagy. In order  
to prevent a futile cycle in which newly synthesized 
cellular building blocks are prematurely broken down 
again, mTORC1 suppresses catabolic autophagy (Fig. 2a). 
To that end, mTORC1 applies inhibitory phosphoryla­
tion marks to unc-51-like autophagy-​activating kinase 
1 (ULK1) and ATG13, two key early effectors in the 
induction of autophagy75–77. In complex with 200-kDa 
FAK family kinase-​interacting protein (FIP200) and 
ATG101, ULK1 and ATG13 drive formation of the 
autophagosome78. mTORC1 phosphorylation of ULK1 
and ATG13 blocks this process, allowing proteins and 
organelles — including some that may be redundant 
or damaged — to accumulate in the cell rather than be 
degraded and recycled. Under nutrient-​replete condi­
tions, mTORC1 also phosphorylates UVRAG, which 
normally associates with the HOPS complex to assist 

in trafficking and fusion, as well as Rab7 activation. 
By disrupting this interaction, mTORC1 inhibits auto­
phagosome maturation and the conversion of endo­
somes into lysosomes, thereby acting as a check on both 
the early and late stages of autophagy79.

Inhibition of mTORC1 by nutrient deprivation or 
rapamycin treatment flips the cell into a ‘starvation’ 
regime, shunting resources away from biosynthesis and 
towards autophagy. In interphase cells, turning off the 
mTORC1 molecular switch restores autophagosome 
initiation and permits nuclear translocation of both the 
transcription factor EB (TFEB) and the related transcrip­
tion factor E3 (TFE3), which activate genes for lyso­
somal biogenesis in a coordinated fashion80–82 (Fig. 2a,b). 
Newly formed lysosomes then break down proteins and 
release constituent monomers back to the cytoplasm 
to regenerate the pool of cellular amino acids, enabling 
reactivation of the mTORC1 pathway after prolonged 
starvation83. Importantly, this coupling between nutrient 
status and autophagy is disrupted during mitosis, when 
CDK1 inhibits both mTORC1 and autophagosome for­
mation to protect the genome from degradation after 
dissolution of the nuclear envelope84.

Recent studies demonstrate that the feedback loop 
between the lysosome and mTORC1 is crucial for 
cell survival in nutritionally sparse environments. 
For example, pancreatic cancer cell lines that rely on 
macropinocytosis for nutrients stop proliferating when 
ablation of the transporter SLC38A9 traps essential 
amino acids inside the lysosome, impairing autophagic 
reactivation of mTORC1 (ref.85). Strikingly, a similar fit­
ness defect is observed in nutrient-​deprived cells that 
lack the autophagy receptor nuclear fragile X mental 
retardation-​interacting protein 1 (NUFIP1), which 
recruits ribosomes to the autophagosome upon mTORC1 
inhibition86. Defects in ribosome degradation appear 
to block reactivation of the mTORC1 pathway, while 
supplementation of exogenous nucleotides can restore 
growth87. These data suggest that ribosomes may serve 
as a major storage depot for amino acids and ribonucleo­
tides and thus imply that mTORC1 may trigger selective 
‘ribophagy’ to maintain cell viability under nutritional 
stress88. How mTORC1 balances bulk versus selective 
autophagy89, how it exerts control over the kinetics of 
its own reactivation in starved cells and the functional 
importance of this reactivation are not fully understood. 
As lysosome–mTORC1 communication is essential in 
certain conditions in several tumour models, address­
ing these questions may shed light on the lysosome as 
a signalling organelle and guide new approaches for  
the treatment of cancer and metabolic disease.

Roles of mTORC2
The first direct substrate of mTORC2 was discovered 
serendipitously. While immunoblotting for T389 phos­
phorylation of the mTORC1 target S6K1 in RICTOR-​
depleted cells, researchers observed that mTORC2 
knockdown did not affect S6K1 phosphorylation; 
instead, it suppressed a cross-​reacting background band, 
which they identified as a homologous phosphory­
lation site on protein kinase Cα (PKCα)29 (Fig. 2c). 
A member of the AGC (PKA/PKG/PKC) family of  

Autophagosome
A double-​membraned vesicle 
that forms during the early 
stages of autophagy to engulf 
cellular cargo (organelles and 
macromolecules). The 
autophagosome fuses with the 
lysosome to degrade 
macromolecules into 
constituent amino acids or 
fatty acids, enabling their reuse 
elsewhere in the cell.

Macropinocytosis
A non-​selective endocytic 
process in which cells take up 
soluble nutrients and 
macromolecules from the 
extracellular medium. These 
molecules are eventually 
degraded and recycled in the 
lysosome.
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protein kinases, PKCα is thought to act as a cytoskeletal 
regulator, although the mechanistic basis of this pro­
cess remains unclear90. Accordingly, knockdown of 
RICTOR, mTOR or mLST8, but not RAPTOR, impairs 
the reorganization of the actin cytoskeleton network and 
inhibits chemotaxis and migration30,91; this phenotype, 
in turn, may account in part for the well-​documented 
role of mTORC2 in the mobility and metastasis of 
cancer cells92,93.

Subsequent studies have revealed that mTORC2 also 
collaborates with PDK1 to activate other AGC family 
kinases, including several classes of PKCs94,95, the ion 
transport regulator serum- and glucocorticoid-​induced 
protein kinase 1 (SGK1)96 and the oncogene Akt97. Akt 
is a central early effector in the PI3K pathway, where it 
mediates the cellular response to insulin and promotes 
proliferation. In that capacity, Akt rewires metabolism 
to resist stressors through the forkhead-​box FOXO1/3a 
transcription factors98 and NAD kinase99 (Fig. 2b,c). 
As one of the most frequently mutated signalling nodes 
in cancer cells, Akt also governs the activity of glycogen 
synthase kinase 3b (GSK3b) to suppress apoptosis and 
modulate glucose homeostasis. In addition, Akt may 
mediate crosstalk between the mTORC1 and mTORC2 
complexes by inactivating tuberous sclerosis com­
plex 2 (TSC2), a strong inhibitor of mTORC1 activity100, 
and phosphorylating mSin1, an obligate component of 
mTORC2 (ref.101).

As yet, the relationship between mTORC2 and Akt is 
incompletely understood. Emerging evidence suggests 
that mTORC2 and Akt engage in mutually reinforcing 
layers of feedback phosphorylation that regulate local­
ization and activity, although the effect of these marks 
— individually and cumulatively — is still unclear102. 
Moreover, unlike SGK1, Akt may not require mTORC2 
for basal activation. Although mTORC2 kinase activity is 
necessary for phosphorylation of certain Akt substrates, 
such as FOXO1/3a, it is dispensable for others, including 
TSC2 and GSK3b (ref.19). Given that the FOXO proteins 
are regulated by both SGK1 and Akt, it is possible that 
SGK is, in this context, the more important mTORC2 
effector, while Akt plays a subtler modulatory role.

Regulation of mTOR function
To mediate between cellular behaviour and the cellu­
lar environment, mTORC1 and mTORC2 integrate 
upstream signals, including nutrient levels, growth factor 
availability, energy and stress, to gate their own activation 
(Fig. 3). While the inputs and modes of regulation differ 
for each complex, we now recognize that mTORC1 and 
mTORC2 engage in substantial crosstalk — giving rise to 
signalling feedback loops with important consequences 
for health and disease.

Regulators of mTORC1
Cells must toggle mTORC1 activity in response to 
nutrient oscillations and other environmental changes 
stimulated by feeding or fasting. Because mTORC1 
initiates a resource-​intensive anabolic programme, 
it should only turn ‘on’ when energy, growth factors 
and macromolecular building blocks are all plentiful. 
To monitor and integrate these inputs, the mTORC1 

pathway collects upstream signals at two sets of small 
G proteins, termed the Rheb and Rag GTPases (Fig. 3). 
Biochemical studies over the past decade have led to a 
model in which the nucleotide-​loading state of the Rheb 
and Rag GTPases modulate, respectively, mTOR kinase 
activity103,104 and intracellular localization105,106 to pro­
mote cell growth. When the cellular environment is rich 
in cytokines, endocrine signals and ATP, Rheb main­
tains its active GTP-​bound state on the surface of the 
lysosome and is competent to stimulate mTORC1 kinase 
activity107. However, mTORC1 can only co-​localize with 
this population of GTP-​Rheb when amino acids, glu­
cose and other nutrients are readily available to acti­
vate the Rag heterodimer, which recruits mTORC1 from 
the cytoplasm to the lysosome. By funnelling all major 
environmental cues through this spatial ‘AND gate’, cells 
ensure that mTORC1 potentiates anabolism only when 
intracellular and extracellular conditions can support 
sustained growth.

Growth factors. mTORC1 acts as a downstream effec­
tor for growth factors and other mitogens, which often 
serve as proxies for broader paracrine and endocrine 
status. To regulate the mTORC1 pathway, these signals 
converge upon the tuberous sclerosis complex (TSC), 
a heterotrimeric signalling node upstream of Rheb that 
is composed of TSC1, TSC2 and TBC1D7 (ref.108). TSC 
acts as a GTPase-​activating protein (GAP) for lyso­
somal Rheb, catalysing the conversion from the active 
Rheb-​GTP state to the inactive GDP-​bound state103,109. 
As a key ‘molecular brake’ for mTORC1 activation110, 
TSC is subject to many levels of regulation. Upon expo­
sure to insulin, insulin/insulin-​like growth factor 1  
(IGF-1) activates Akt, which phosphorylates TSC2 at mul­
tiple sites to dissociate TSC from the lysosomal surface 
and relieve inhibition of Rheb and mTORC1 (ref.111–114). 
To tune the extent and duration of mTORC1 activa­
tion and restore TSC regulation after this stimulus, the 
mTORC1 substrate S6K1 then directly phosphorylates 
insulin receptor substrate 1 (IRS-1) as part of a negative 
feedback loop, blocking further insulin-​mediated acti­
vation of the PI3K–Akt pathway115,116. Wnt and tumour 
necrosis factor (TNF) signalling also repress TSC activ­
ity, although the precise mechanism of this regulation 
is unclear117,118. In addition, TSC is subject to inhibitory 
phosphorylation from ERK119 and p90 ribosomal S6 
kinase (RSK)120, two downstream substrates of the Ras 
receptor tyrosine kinase signalling pathway. Because 
mutations that activate the Ras and PI3K–Akt pathways 
occur in many cancers, TSC regulation of mTORC1 is 
often lost in oncogenic contexts, resulting in constitu­
tive mTORC1 activity even in the absence of appropriate 
growth factor signals.

Independently of TSC and Rheb, growth factors can 
also modulate mTORC1 activity through PRAS40, an 
endogenous inhibitor of the mTORC1 complex. A sub­
strate and component of mTORC1, PRAS40 associates 
with Raptor to abolish Rheb-​driven mTORC1 activa­
tion in vitro22,23. However, in the presence of insulin, 
Akt phosphorylates PRAS40, leading to its sequestra­
tion by a cellular 14–3–3 scaffold protein and restoring 
mTORC1 kinase activity. How growth factor signals are 
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coordinated through PRAS40 and Rheb, and the relative 
importance of each branch in different cellular contexts, 
remains an area of active study.

Energy and oxygen availability, and other cellular stresses.  
Under conditions of energy or oxygen scarcity, several 
factors work together to activate the TSC axis and sup­
press mTORC1 signalling. Periods of intense metabolic  

exertion or glucose withdrawal can deplete cellular 
stores of ATP, triggering the AMP-​activated protein 
kinase (AMPK) complex, a master regulator of cel­
lular energy charge. As an antagonist of most major 
ATP-​consumptive processes, AMPK inhibits mTORC1 
directly, by phosphorylating Raptor, and indirectly, by 
activating TSC2 (refs121–123). At the same time, by repro­
gramming metabolism away from anabolic pathways, 
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necrosis factor.
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AMPK relieves the pressure on mitochondrial respira­
tion and reduces the chances of cellular damage from the 
generation of reactive oxygen species124.

Independently of AMPK, oxidative stress can also 
inhibit mTORC1 by upregulating REDD1, a small protein  
that activates TSC125,126. Other signs of cellular stress — 
ranging from organelle dysfunction to DNA replication 
stress — can further oppose mTORC1 activation127. 
For example, the endoplasmic reticulum unfolded  
protein response can inhibit mTORC1 by increasing 
transcription of the Sestrin proteins, key negative 
regulators that will be discussed in greater detail below128. 
Likewise, DNA damage induces various p53 target 
genes, including an AMPK subunit (AMPKβ), PTEN 
and TSC2, all of which can dampen mTORC1 activity 
to slow proliferation and protect genome integrity129.

Amino acids and other nutrients. Besides spurring 
growth factor release, feeding also replenishes the pool 
of intracellular nutrients. These nutrients, which consti­
tute the basic molecular substrates for biology, include 
amino acids, nucleotides and vitamins, all of which may 
be partially or wholly derived from the diet. Among the 
major nutrients, amino acids play a dominant role in 
regulating the mTORC1 pathway130; indeed, Avruch 
and colleagues observed as early as 1998 that the amino 
acids leucine and arginine, in particular, are absolutely 
required for mTORC1 activation in mammalian cells131. 
How these amino acids communicate their availability to 
mTORC1, however, remained a complete mystery until 
2008, when two groups independently reported the dis­
covery of the Rag-​GTPases as essential components of 
the nutrient sensing machinery105,106.

Unlike all other known small GTPases, the Rags are 
obligate heterodimers, configured such that RagA or 
RagB is bound to RagC or RagD. Anchored to the lyso­
some by the pentameric Ragulator complex (comprising 
p18, p14, MP1, C7orf59 and HBXIP, otherwise known as 
LAMTOR1–LAMTOR5)132–134, the Rags can be found in 
one of two stable conformations: an ‘on’ state, in which 
RagA/B is bound to GTP and RagC/D to GDP; and 
an ‘off ’ state, in which the reverse is true. These stable 
nucleotide-​loading states are maintained by intersubunit 
crosstalk between the Rags135, but they can be modulated 
by the amino acid and nutrient status through a series of 
upstream factors with GAP or GTP exchange factor activity 
towards the Rags. Emerging structural evidence shows 
that, under amino acid-​replete conditions, Raptor grasps 
the ‘on-​state’ Rags via a protruding ‘claw’136. This inter­
action recruits mTORC1 from the cytosol to the lyso­
some, allowing lysosomal Rheb to stimulate mTORC1 
kinase activity. Thus, the Rags and Rheb define the two 
independent arms that converge to license the mTORC1 
pathway (Fig. 3).

Drawing on work by several groups over the past 
decade, we now recognize that mTORC1 senses cyto­
solic and lysosomal amino acid concentrations through 
distinct mechanisms. Of the ‘nutrient sensing complexes’ 
that transmit cytosolic amino acid signals to the Rags, 
the most direct regulator of Rag status is the GAP activity 
towards the Rags 1 (GATOR1) complex137. GATOR1 is 
composed of three subunits — DEP domain-​containing 

5 (DEPDC5), nitrogen permease related-​like 2 (NPRL2) 
and NPRL3 — with GAP activity residing in the NPRL2 
subunit138. When cytosolic amino acid levels fall, 
GATOR1 experiences a poorly understood regulatory 
event that enables it to hydrolyse the GTP bound to 
RagA/B and inhibit the mTORC1 pathway139. In turn, 
GATOR1 is itself regulated by other upstream factors. 
The large KICSTOR complex, consisting of the proteins 
KPTN, ITFG2, C12orf66 and SZT2, tethers GATOR1 
to the lysosome and is required for cellular sensitivity to 
amino acid deprivation140,141. Meanwhile, GATOR1 also 
physically interacts with GATOR2, a pentameric com­
plex of WDR59, WDR24, MIOS, SEH1L and SEC13 
(ref.137). Through unknown molecular mechanisms, 
the GATOR2 complex antagonizes GATOR1 function 
and acts as a potent positive regulator of mTORC1. 
Elucidating the link between GATOR2 and GATOR1 
activity remains one of the most intriguing challenges 
in basic mTOR biology.

Recently, the question of GATOR2 function has 
attracted special attention because of the identification 
of two novel ‘amino acid sensors’, which relay the cyto­
solic availability of leucine and arginine to the mTORC1 
pathway through interactions with GATOR2. Upon 
acute leucine starvation, the cytosolic leucine sensor  
Sestrin2 binds and inhibits GATOR2, preventing lyso­
somal recruitment of mTORC1 (ref.142). Refeeding 
restores leucine levels and allows the amino acid to 
bind a pocket on Sestrin2, dissociating the protein 
from GATOR2 to relieve mTORC1 inhibition142,143. 
Although the leucine-​binding affinity of Sestrin2 dic­
tates mTORC1 sensitivity to leucine deprivation in cell 
culture, Sestrin2 and its relatives Sestrin1 and Sestrin3 
may also be effectors of leucine-​independent stress  
pathways. In support of this hypothesis, the Sestrins are 
transcriptionally upregulated by ATF4 and the endo­
plasmic reticulum unfolded protein response128,144, and 
Sestrin overexpression alone is sufficient to suppress 
mTORC1 signalling in vitro145,146. By contrast, cellular 
arginine sensor for mTORC1 (CASTOR1) appears to 
be exquisitely sensitive to cytosolic arginine alone147,148. 
A protein that can exist either as a homodimer or as a 
heterodimer with CASTOR2, CASTOR1 also inhibits 
GATOR2 in the absence of arginine and dissociates from 
the complex when arginine is bound.

A second arginine sensor, SLC38A9, monitors amino 
acid levels inside the lysosomal lumen and defines the 
lysosomal branch of the nutrient sensing machinery149,150.  
SLC38A9 resides on the lysosomal membrane and tran­
sports neutral amino acids out of the organelle in an 
arginine-​gated fashion85. This efflux activity may ena­
ble the products of autophagic protein degradation to 
reactivate the mTORC1 pathway after prolonged star­
vation. Synthesizing structural and biochemical evi­
dence, we posit that the binding of lysosomal arginine 
to the first transmembrane helix of SLC38A9 frees the 
N terminus of the protein from the central pore151. This 
domain can then collaborate with Ragulator to push 
the Rags into the active state by promoting GTP load­
ing of RagA/B152. Through a separate mechanism, the 
lysosomal v-​ATPase, which maintains the pH gradient 
of the lysosome, has also been reported to interact with 

Endoplasmic reticulum 
unfolded protein response
A stress pathway activated by 
unfolded proteins in the 
endoplasmic reticulum lumen 
that upregulates chaperones, 
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mRNA of secretory proteins 
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the Rag–Ragulator complex to influence the nucleotide-​
loading state of the Rags153. Finally, the folliculin 
(FLCN)–FNIP2 complex acts as a GAP for RagC/D to 
sustain mTORC1 activation in the presence of amino 
acids154,155. By modulating the status of RagC/D, FLCN–
FNIP2 may also recruit and enhance phosphorylation 
of the transcription factors TFEB/TFE3, although it is 
unclear whether this process is mTORC1 independ­
ent156,157. If FLCN–RagC/D–TFEB/TFE3 does indeed 
constitute a distinct axis, loss of FLCN could amplify the 
TFEB/TFE3 transcriptional programme, an oncogenic 
signature in some cancers158,159, allowing us to reconcile 
FLCN’s status as a tumour suppressor in vivo with its 
activating role in the mTORC1 pathway.

The recent discovery of an S-​adenosylmethionine 
(SAM) sensor, named SAMTOR, has shown that 
mTORC1 responds not only to amino acids (for example, 
leucine and arginine) but also to their metabolic 
by-​products — in this case, a key methyl donor derived 
from methionine. Unlike Sestrin2 and CASTOR1, 
which oppose GATOR2 signalling when their cognate 
amino acids are absent, SAMTOR negatively regulates 
mTORC1 by binding GATOR1 and KICSTOR under 
methionine or SAM deprivation160. Restoration of SAM 
levels dissociates SAMTOR from these complexes and 
stimulates mTORC1 activity.

At present, we do not know how other amino acids 
impact mTORC1 activation, nor do we understand what 
role, if any, the general amino acid sensors GCN2 and 
ATF4 play in acute mTORC1 signalling cascades. While 
longer-​term amino acid deprivation is thought to feed 
from GCN2 back to mTORC1 through transcriptional 
upregulation of ATF4 and the Sestrins, it is not clear 
whether GCN2 and ATF4 regulate mTORC1 in tran­
siently starved cells. Moreover, we still lack mechanistic 
explanations for how several known metabolic inputs 
impinge on the pathway. For example, although acute 
withdrawal of glucose inhibits mTORC1 at least partially 
through activation of AMPK, a study in AMPK-​null cells 
has demonstrated that glucose deprivation also signals 
through the Rag-​GTPases161, reinforcing earlier evidence 
that glucose can signal independently of both AMPK and 
TSC162. Similarly, depletion of purine nucleotides inhibits 
mTORC1, perhaps as an indicator of replication stress, 
but it is not clear whether this inhibition is driven by TSC 
or by degradation of Rheb163,164. One recent study sug­
gests that phosphatidic acid may activate mTOR signal­
ling as a proxy for fatty acid availability165, while another 
implicates glutamine in Rag-​independent reactivation 
of mTORC1 (ref.166). Cholesterol has also been shown 
to activate mTORC1 through a complex composed of 
SLC38A9 and the Niemann–Pick C1 protein281. Whether 
mTORC1 senses other metabolites essential for cell 
growth, such as vitamins or inorganic ions, remains an 
open question; equally unclear is how these nutritional 
requirements might diverge in cell types or organisms 
with different dietary and metabolic needs (Box 1).

Regulators of mTORC2
In part because it has been difficult to tease apart the 
regulation of mTORC1 and mTORC2 with pharmaco­
logical agents, the activators of mTORC2 are still poorly 

defined. Even so, it is clear that mTORC2 is primarily 
regulated by growth factors through the PI3K pathway, 
with the unique mTORC2 component mSin1 acting as 
a key signal integrator (Fig. 3). Like other PI3K effectors, 
mSin1 possesses a pleckstrin homology domain, which 
autoinhibits mTORC2 kinase activity in the absence of 
insulin36. This inhibition is relieved by the binding 
of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), 
a product of insulin-​induced or serum-​induced PI3K 
activation36,167. PIP3 may recruit mTORC2 and Akt to 
the plasma membrane, where reciprocal phosphoryl­
ations between the two kinases modulate their locali­
zation and activation102. In several model systems, 
including Dictyostelium discoideum, this localization 
and activation is also regulated by the small GTPases 
Rac1, Rap1 and Ras, which bind to mTORC2 to direct 
chemotaxis and growth168–170. A recent study extends 
this paradigm to human cells by showing that mSin1 
can recruit oncogenic Ras to directly catalyse mTORC2 
kinase activity at the plasma membrane171. This find­
ing connects mTORC2 to a major cancer pathway and 
reinforces its role in driving survival and proliferation.

Because mTORC1 downregulates insulin–PI3K–Akt 
signalling through feedback inhibition, it also engages in 
negative crosstalk with mTORC2 (ref.172). As previously 
described, mTORC1 can disrupt PI3K–Akt signalling 
through S6K1-dependent degradation of IRS1 (refs115,116); 
alternatively, mTORC1 can activate Grb10, a negative 
regulator of the insulin/IGF-1 receptor173,174. Both of these 
mechanisms have downstream implications for mTORC2 
activity and may account for some of the paradoxical 
metabolic phenotypes associated with chronic rapamy­
cin treatment (Fig. 4). Unexpectedly, mTORC2 is also 
activated by AMPK under energetic stress, suggesting 
that it may mediate cellular adaptation to oxygen-​poor  
or nutrient-​poor tumour environments in vivo175.

mTOR in physiology and pathophysiology
Characterization of mTOR signalling nodes is a work 
in progress at the cellular level, but the functional regu­
lation of the pathway becomes exponentially more com­
plex at the organismal level, as mTOR must coordinate 
the storage and mobilization of nutrients and energy 
across different tissues. Unlike cells in culture, which 
are bathed in growth factors and nutrients and conse­
quently maintain high mTOR activity, cells in vivo tend 
to display lower baseline activity and experience sharper 
fluctuations in mTOR activity upon fasting or feeding. 
Coordinating physiological responses with nutrient 
status requires the mTOR pathway to sense conditions 
within specialized niches and to enact tissue-​specific 
anabolic or catabolic cascades. Appropriate regulation of 
mTOR is crucial for homeostasis and organismal health; 
conversely, imbalances in mTOR activity in various  
tissues can lead to metabolic dysregulation and disease.

mTOR in metabolic syndrome
As a critical regulator of glucose metabolism and lipo­
genesis across various tissues, the mTOR pathway is 
readily hyperactivated by overfeeding and underwrites 
many diseases of constitutive growth, including obesity 
and type 2 diabetes.
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Box 1 | Cell-​specific and organism-​specific regulatory mechanisms across evolution in mTORC1 signalling

In order to align mTOR complex 1 (mTORC1) activity with tissue function, some specialized human cells may respond  
to unique inputs, adjust the weighting of upstream signals262 or regulate mTORC1 through non-​canonical mechanisms. 
In muscle cells, mechanical stimuli have been shown to activate mTORC1 (refs263–265), whereas in primary osteoclasts, amino 
acid deprivation can abrogate mTORC1 signalling without dissociating the complex from the lysosome266. We postulate 
that specialized cells can also adapt to their niches by tuning expression of nutrient sensors. For example, in tissues where 
physiologically relevant leucine concentrations are relatively high, cells might selectively increase expression of Sestrin2  
to raise the leucine threshold for mTORC1 activation. Conversely, cells that are protected from leucine fluctuations might 
abolish Sestrin2 expression altogether to render mTORC1 insensitive to leucine deprivation. Thus, differential expression  
of Sestrin could modulate mTORC1 sensitivity to leucine levels in a tissue-​specific manner (see the figure, part a).

Although the core components of the nutrient sensing machinery — the Rag GTPases, Ragulator and the GAP activity 
towards the Rags (GATORs) — are conserved in metazoans (see note below), some of the direct amino acid sensors are absent 
in non-​vertebrate lineages (conservation of mTORC1 pathway components in common model organisms is shown in the 
figure, part b). Based on sequence homology, Drosophila melanogaster retains Sestrin and the S-​adenosylmethionine sensor 
SAMTOR but lacks both the lysosomal and cytosolic arginine sensors; meanwhile, Caenorhabditis elegans possesses SLC38A9 
and Sestrin homologues but does not have a clear SAMTOR equivalent. The irregular pattern of conservation of the sensors 
may be linked to the distinct nutritional needs of each organism. In support of this idea, computational searches indicate that 
Saccharomyces cerevisiae, a model organism capable of synthesizing all 20 amino acids de novo, does not have any amino acid 
sensors and, consequently, does not require any individual amino acid for TORC1 activation. Instead, the S. cerevisiae TORC1 
pathway may respond to the general availability of nitrogen and carbon sources267. Puzzlingly, S. cerevisiae also does not seem 
to require a Rheb homologue to activate TORC1 (ref.268), suggesting that its molecular circuitry may diverge sharply from that 
of other model organisms, including Schizosaccharomyces pombe269. The blue box (see the figure, part b) indicates that the 
EGO complex in yeast shares little sequence homology with Ragulator, although it appears to serve an analogous function.

Even nutrient sensors with recognizable homology may display functional differences in divergent species. Binding assays 
with radioactive leucine reveal that the D. melanogaster homologue of Sestrin (dSesn) has 5-fold lower affinity for leucine 
than the human protein142,270. We speculate that this molecular difference may allow dSesn to sense physiological  
leucine fluctuations in the D. melanogaster haemolymph, which has about a 5-fold to 10-fold higher amino acid concentration 
than human plasma270,271. Taken together with conservation patterns, these data also suggest an attractive hypothesis: 
perhaps organisms evolved or retained specific nutrient sensors to enable the TORC1 pathway to respond to limiting 
nutrients in their metabolic niches. However, because no unique sensors have yet been identified in non-​human systems 
and the evolutionary lineage of the sensors is not well understood, it is difficult to draw correlations between evolutionary 
pressures and the functional architecture of the TORC1 nutrient sensing pathway. The discovery of novel nutrient sensors 
outside higher eukaryotes would clarify the evolutionary logic of the nutrient sensing axis and define new inputs into the 
TORC1 pathway. Moreover, sensors initially characterized in other species could be conserved in human cell types with 
specialized metabolic environments.

Notes. For reasons that remain unclear, the KICSTOR complex is the sole exception to this generalization. KPTN, ITFG2 and 
C12orf66 seem to drop out of the evolutionary tree in organisms more distal than mammals; SZT2, the largest component of 
the complex, may have a putative homologue in C. elegans  
but is not retained in flies or yeast. If KICSTOR serves as a 
molecular glue that holds human GATOR1 and GATOR2 
together in a supercomplex, as one study has argued140,  
it is possible that it is dispensable in lower organisms where 
GATOR1 and GATOR2 are more constitutively bound to  
each other. Consistent with this hypothesis, the S. cerevisiae 
homologues for the GATORs, the SEACIT and SEACAT 
complexes, are indeed more tightly associated than their 
human counterparts and have been reported to form a 
supercomplex without any mediating proteins272. A. thaliana, 
Arabidopsis thaliana; CASTOR, cellular arginine sensor  
for mTORC1; H. sapiens, Homo sapiens; M. Musculus,  
Mus musculus; TSC, tuberous sclerosis complex.
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Insulin sensitivity and glucose homeostasis. To prevent 
the accumulation of nutrients in the blood, animals 
have evolved mechanisms to sequester macromolecules 
and energy after feeding. These processes are coordi­
nated across different tissues by the release of insulin 
from the pancreas, which co-​activates mTORC1 and 
mTORC2 to promote hypertrophy and growth (Fig. 4a). 
In skeletal muscle, insulin induces the uptake of glucose 
and enhances its storage as glycogen by stimulating 
the mTORC2−Akt axis176; at the same time, circulating 
amino acids are incorporated into new muscle biomass 
in an mTORC1-dependent manner.

By contrast, low levels of insulin following fasting 
induce autophagy in ‘dispensable tissues’ (that is, muscle 

and liver, as opposed to the brain), which break down 
protein stores to fuel gluconeogenesis in the liver. This 
catabolic programme has profound effects on metabolic 
organs: one study found that livers from mice fasted for 
24 h decreased in weight by nearly 25%, with the differ­
ence arising not from changes in cell number but from 
reductions in cell size177. Strikingly, this fasting-​induced 
shrinkage was abolished in mice with liver-​specific 
knockouts of TSC1, Raptor or the autophagy gene Atg7, 
suggesting that the switch from anabolism to catabolism 
is primarily regulated by mTORC1 (refs177,178).

Substantial evidence now points to mTORC1 as a 
central mediator of organismal survival during nutrient 
restriction. For mice that cannot tune mTORC1 signalling,  
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lipolysis (right). b | Dysregulation of mTOR signalling in metabolic syndrome. Although the negative feedback loop between 
mTORC1 and mTORC2 is carefully balanced under physiological conditions (left), chronic hyperactivation of mTORC1 by 
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of lipids in the muscle and liver, and type 2 diabetes (middle). Rapamycin-​based therapies have not been effective in 
diabetes patients with hyperactive mTORC1 signalling because prolonged rapamycin treatment also inhibits mTORC2 
(right). Grb10, growth factor receptor-​bound protein 10; IGF, insulin-​like growth factor; IRS, insulin receptor substrate;  
PIP2, phosphatidylinositol (4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; S6K1, p70 S6 kinase 1.
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prolonged fasting — like the postnatal fast caused by  
disruption of the placental nutrient stream — can pose 
an insurmountable challenge. Unlike wild-​type neonates, 
which rapidly inhibit mTORC1 after an initial drop in 
circulating glucose, mice expressing a constitutively 
active allele of RagA (RagA-​GTP) are unable to sup­
press mTORC1 signalling during the perinatal fasting 
period161. Because these mutant mice fail to restrict their 
energy expenditure or trigger autophagy to supply free 
amino acids for gluconeogenesis, their plasma glucose 
levels plummet, leading to fatal hypoglycaemia within 
1 day of birth. A similar perinatal lethality occurs in mice 
lacking the Sestrin proteins (upstream negative regulators 
of mTORC1)179 and in mice with defects in the autophagy 

machinery (downstream targets of mTORC1)180, demon­
strating that mTORC1 activity must be tightly coupled to 
diet to maintain glucose homeostasis in vivo.

Adipocyte formation and lipid synthesis. Postprandial 
mTOR activation also promotes longer-​term energy 
storage by increasing the synthesis and deposition of tri­
glycerides in white adipose tissue (WAT). As the largest 
repository of energy in the body, WAT serves as a meta­
bolic hub, tailoring its biosynthetic activity to fluctuations 
in mTOR signalling. In these cells, the mTORC1−S6K1− 
SREBP axis drives de  novo lipogenesis64–66, while 
mTORC1 activation of PPARγ helps pre-​adipocytes 
differentiate into mature tissue67,181 (Fig. 4a). S6K1 may 
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also increase fatty acid import into adipocytes through a 
complex mechanism involving the glutamyl-​prolyl-tRNA 
synthetase (EPRS)182. Consistent with the importance of 
mTORC1 in WAT, adipocyte-​specific deletion of Raptor 
reduces WAT tissue mass and enhances lipolysis in 
mouse models183. Tantalizingly, Adi-​Raptor KO mice are 
also resistant to diet-​induced obesity184. Unfortunately, 
these defects in adipocyte expansion can drive fat depos­
its to accumulate in the liver instead, leading ultimately 
to hepatic steatosis and insulin resistance183.

While regulation of adipose tissue exerts second-​
order effects on other organs, mTOR also directly modu­
lates lipid metabolism in the liver. Several groups have 
found that hepatic lipogenesis is impaired in both Raptor 
and Rictor-​depleted mice, with mTORC2-dependent 
effects at least partially rescuable by constitutive activa­
tion of Akt64,185,186. In addition, mice with liver-​specific 
hyperactivation of mTORC1 fail to fully stimulate the 
production of ketone bodies, which are synthesized 
from fatty acids to supply peripheral tissues with alter­
native energy packets during fasting177. Although the 
relationship between mTORC1 and ketogenesis is not 
entirely clear, insulin withdrawal likely inhibits mTORC1 
phosphorylation of S6 kinase 2 (S6K2), which then 
enhances expression of ketogenic factors by freeing 
the transcription factor PPARα from its corepressor, 
nuclear receptor corepressor 1 (NCoR1). Similar keto­
genic defects are also observed in aged mice, suggesting 
that long-​term decline in liver function may stem from 
mTOR-​driven dysregulation of lipid metabolism177.

Pharmacological interventions for metabolic disease. 
Many diseases of overfeeding, among them obesity and 
type 2 diabetes, produce a major and detrimental energy 
imbalance in the body. By generating a constant surplus 
of hormones, cytokines and nutrients, these diseases 
collapse the metabolic cycles that underwrite tissue 

homeostasis, forcing mTORC1 to remain in a persistent 
‘on’ state. Constitutive mTORC1 signalling activates 
S6K1 and Grb10 to decouple the insulin/IGF-1 receptor 
from downstream PI3K pathway effectors, dampening 
the physiological response to insulin115,116,173,174 (Fig. 4b). 
Moreover, PI3K inhibition suppresses mTORC2–Akt to 
block glucose uptake and promote gluconeogenesis185,187, 
thereby further elevating the glycaemic load and exacer­
bating the ectopic fat deposition and glucose intolerance 
that constitute the hallmarks of metabolic syndrome.

Given that mTORC1 sits at the centre of a web of 
dysregulated metabolic signalling, it is tempting to 
imagine that inhibition of this node might reverse both 
the symptoms and underlying causes of obesity and 
diabetes. Lending support to these hopes, metformin, 
a  first-​line treatment for type 2 diabetes, has been 
shown to potently suppress mTORC1 by activating 
AMPK and TSC188; likewise, ablation of the mTORC1 
effector S6K1 can protect against diet-​induced obesity 
and enhance insulin sensitivity172. Unfortunately, direct 
pharmacological inhibition of mTORC1 yields more 
complex outcomes. Patients administered rapamycin 
experience more severe insulin resistance, perhaps 
because chronic rapamycin treatment disrupts not only 
mTORC1 but also the integrity of the mTORC2 complex, 
blunting the Akt-​dependent insulin response40 (Fig. 4b). 
To bypass these adverse effects, it will be necessary to 
develop new, truly specific mTORC1 inhibitors, as well 
as tissue-​specific modulators of mTORC1 function.

mTOR regulation of brain physiology and function
Within the brain, the mTOR pathway orchestrates a 
wide array of neuronal functions, temporally spanning 
every stage of development189,190. From framing basic 
cortical architecture to remodelling neuronal circuitry 
in response to experience, mTOR and its molecular 
accomplices shape both the signalling and the physical 
terrain of the brain (Fig. 5a,b). Not surprisingly, loss of 
mTOR regulation — through either genetic or chemical 
perturbations — has severe repercussions for neuronal 
function (Fig. 5a). Brain-​specific knockouts of Raptor and 
Rictor display remarkably similar phenotypes, typified 
by microcephaly — via reductions in neuron size and 
number — and improper differentiation191,192. In addi­
tion, Raptor deletion in the brain also triggers early 
postnatal death191, while Rictor deletion leads to aberrant 
brain foliation and impaired dendrite extension192.

mTOR in neurodevelopmental disorders. Hyperactive 
mTOR signalling, as observed in neurodevelopmen­
tal mTORopathies, is associated with characteristic 
defects (Fig. 5a). As a class, mTORopathies are caused 
by loss-​of-function mutations in negative regulators of 
mTORC1, usually manifesting with some subset of the 
following symptoms: focal malformations in the brain, 
epileptic seizures, macrocephaly, autism spectrum disor­
der and benign tumours or cystic growths193. Perhaps the 
best-​studied such disease is TSC, which arises when loss 
of either TSC1 or TSC2 induces constitutive mTORC1 
activity. Patients with TSC often grow lesions that dis­
rupt the laminar organization of the cortex, nucleating 
epileptogenic foci; these patients may also have enlarged 

Microcephaly
A condition in which the head 
is abnormally small owing to a 
brain that fails to grow and fully 
develop. Microcephaly is often 
coupled to developmental 
abnormalities and cognitive 
deficits.

Fig. 5 | mTOR signalling in the brain. a | In the brain, mTOR complex 1 (mTORC1) 
signalling is activated not just by nutrients and insulin but also by several tissue-​specific 
inputs, including the neurotransmitter glutamate and the neurotrophic growth factor 
brain-​derived neurotrophic factor (BDNF). Dysregulation of the mTORC1 pathway 
is associated with a set of characteristic neurodevelopmental diseases, collectively 
termed ‘mTORopathies’. Patients with mTORopathies suffer from severe epilepsy and 
may also display focal cortical dysplasia, macrocephaly or megalencephaly, cognitive 
and social defects, and benign tumours. Proteins from genes bearing mutations in neuro
developmental diseases are shown in blue. b | Roles of mTORC1 and mTORC2 during 
neuronal development. Ablation of mTORC1 or mTORC2 in the nervous system perturbs 
cell and organ size and disrupts the cortical architecture of the brain. mTORC1 deletion 
also causes early postnatal lethality. c | Roles of mTORC1 and mTORC2 in postnatal 
maintenance of synaptic plasticity and homeostasis. mTORC1 regulates activity-​
dependent synaptic translation through its substrates eukaryotic initiation factor 
4E-binding protein 2 (4E-​BP2) and p70 S6 kinase 1 (S6K1) to strengthen or weaken a 
given neuronal circuit; moreover, it also promotes synaptic plasticity by pruning obsolete 
synapses through autophagy. Autophagy may additionally play a neuroprotective role by 
degrading misfolded proteins and damaged organelles. mTORC2 remodels the actin 
cytoskeleton in response to neuronal signal transmission and helps convert transient 
excitatory events into long-​term memory. AMPK, AMP-​activated protein kinase; ASD, 
autism spectrum disorder; GATOR, GAP activity towards the Rags; IRS, insulin receptor 
substrate; LKB, liver kinase B1; NF1, neurofibromatosis type 1; PIP2, phosphatidylinositol 
(4,5)-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PKC, protein 
kinase C; PMSE, polyhydramnios, megalencephaly and symptomatic epilepsy; 
PTEN, phosphatase and tensin homologue; STRADα, STE20-related kinase adapter 
protein-​α; TSC, tuberous sclerosis complex.
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neurons and ‘giant’ astrocytes193. Similar phenotypes are 
found in patients with inactivating mutations in the 
negative PI3K regulator PTEN194, the AMPK activa­
tor STRADα195 and the negative regulatory complexes 
GATOR1 and KICSTOR196–200, as well as those with 
activating mutations in Rheb or mTOR201–203. Given that 
mTORC1 has many roles in defining the morphology of 
the developing brain, the epilepsy that clinically distin­
guishes these disorders is likely seeded by prenatal neu­
ronal mis-​wiring204. However, acute rapamycin treatment 
can nonetheless suppress seizures caused by TSC1 loss 
in adult mice205, suggesting that mTOR hyperactivity can 
further stimulate ‘seizing’ in established neural circuits. 
Consistent with a model in which mTORC1 participates 
in multiple stages of epileptogenesis, recent speculation 
contends that the ketogenic diet, a validated therapy for 
treatment-​refractory epilepsy, may work by depriving 
the mTORC1 pathway of activating nutrients206. Other, 
more direct mTOR inhibitors are currently in clinical 
trials as anti-​epileptic agents207,208.

mTOR control of brain function via protein translation 
and autophagy regulation. Surprisingly little is known 
about the regulation of mTOR signalling in normal brain 
function and homeostasis. Unlike cell culture systems, 
the postnatal brain is mostly postmitotic, such that 
environmental inputs are consolidated not to stimulate 
growth or proliferation but rather to enact changes in 
neuronal morphology and connectivity. Although it is 
not clear which inputs are actually relevant in vivo, given 
that the brain is ‘nutritionally protected’ from acute 
fasting (that is, brain biomass and function are gener­
ally left intact for as long as possible under starvation, 
with the brain having first use of available glucose and 
ketone bodies), brain-​derived neurotrophic factor (BDNF) 
has emerged as a major tissue-​specific agonist of the 
neuronal mTOR pathway. As a PI3K activator, BDNF 
increases mTORC1 signalling near injured axons to 
encourage wound healing and repair209,210; in turn, BDNF 
release may itself be regulated by a feed-​forward loop 
downstream of S6K1 (ref.211).

In collaboration with BDNF, mTOR regulates learn­
ing and memory by promoting translation at synapses 
through S6K1 and 4E-​BP2 (ref.212) in a manner that is 
dependent on neuronal activity (Fig. 5c). This localized 
translation is rapamycin-​sensitive and is crucial for the 
remodelling of dendritic spines that accompanies long-​
term potentiation213. Strikingly, animal models lacking 
TSC or 4E-​BP2 recapitulate some of the social and 
cognitive abnormalities associated with autism spec­
trum disorder, suggesting that dysregulation of synaptic 
translation may affect higher-​order brain functions214,215. 
In accordance with this paradigm, synaptic translation 
has also been linked to depression and psychiatric mood 
disorders. The NMDA receptor antagonist ketamine, a 
fast-​acting antidepressant, has been shown to boost 
mTORC1 activity at the synapse, with psychiatric relief 
coinciding with an increase in synaptic protein, dendritic 
spine density and synaptic function211,216. In animal mod­
els, the Sestrin inhibitor NV-5138 appears to mediate 
similar improvements by directly activating mTORC1, 
independent of other upstream signals217. However, while 

these lines of evidence implicate mRNA translation in 
diverse aspects of synaptic plasticity and brain health, we 
still do not know which neuronal mRNAs are regulated 
by the mTORC1 pathway in response to specific stimuli, 
nor do we understand how mTORC1 and its substrates 
localize protein synthesis within individual neurons.

In recent years, it has become increasingly clear that 
translation is not the only mTORC1 output required for 
plasticity. In order to adjust the strength of a neuronal 
circuit, mTORC1 must simultaneously promote the 
building of new proteins at some synapses and the degra­
dation of excess synaptic machinery at others. The latter 
process calls for local inhibition of the mTOR pathway, 
which triggers macroautophagy218 (Fig. 5c). Consistent 
with the apparent importance of autophagy in cogni­
tive function (see Box 2), constitutive mTOR hyper­
activity has been shown to compromise synaptic pruning 
and contribute to autism spectrum disorder-​like social 
deficits in TSC-​deficient mice219. Rapamycin treatment 
was sufficient to rescue these defects, but only when the 
autophagy pathway remained intact. While these find­
ings are quite preliminary, taken in sum with the appar­
ent efficacy of mTORC1 activators, like ketamine, they 
suggest that modulation of the mTORC1 pathway in 
the brain may hold promise as a therapeutic strategy to 
improve cognitive performance and memory in certain 
disease states.

mTOR in cancer
Although the mTOR kinase itself is rarely mutated in 
cancer, it is readily hijacked by upstream oncogenic 
nodes, including those in the PI3K–Akt pathway and 
the Ras-​driven MAPK pathway. As a result, mTOR sig­
nalling is hyperactive in up to 80% of human cancers220, 
in which context it plays a pivotal role in sustaining can­
cer cell growth and survival (Fig. 6a). Because tumour 
microenvironments are poorly vascularized and subject 
to severe nutritional restrictions, loss of the mTORC1 
nutrient sensing machinery may help cancer cells evade 
metabolic checks on anabolism and proliferation. Thus, 
mutations in all three components of the GATOR1 
complex have been implicated in glioblastomas137, while 
RagC and FLCN mutations have been found in follicu­
lar lymphoma and Birt–Hogg–Dubé syndrome, respec­
tively221,222. Meanwhile, hyperactivation of mTORC2 can 
aggravate negative cancer prognoses by activating Akt 
and by supporting the cytoskeletal transformations that 
underlie metastasis92,93.

To date, mTOR inhibitors have met with limited suc­
cess as chemotherapeutic agents. The first generation of 
clinical rapamycin derivatives, known as ‘rapalogs’, were 
approved for advanced renal cell carcinomas in the late 
2000s. Outside certain exceptional contexts223, these 
rapalogs have proved more cytostatic than cytotoxic, per­
haps because they only partially block 4E-​BP-dependent 
translation and fail to inhibit the pro-​survival pathways 
regulated by mTORC2–Akt61,224. Inhibition of mTORC1 
also drives autophagy, which has been shown to nour­
ish cells in nutrient-​poor tumour microenvironments225. 
A second generation of catalytic mTOR inhibitors 
(for example, Torin1, PP242, Ku-0063794) competes 
with ATP to occupy the kinase active site and sidesteps 

Brain-​derived neurotrophic 
factor
(BDNF). A member of the 
neurotrophin growth factor 
family that binds to tropomyosin 
receptor kinase B (Trkb) to 
stimulate the growth and 
differentiation of new neurons 
and synapses. BDNF may 
regulate synaptic plasticity, 
learning and memory.

Dendritic spines
Small protrusions on dendrites 
that receive excitatory  
synaptic inputs and undergo 
morphological alterations to 
modulate synaptic strength. 
Because these spines are 
structured by the actin 
cytoskeleton, they are sensitive 
to mTOR complex 2 activity, 
such that mice lacking Rictor in 
the brain fail to convert early 
long-​term potentiation into 
long-​term memory.

Long-​term potentiation
A process in which synapses  
in neurons become selectively 
stronger in response to 
frequent activation. Long-​term 
potentiation and long-​term 
depression (the weakening of  
a synapse after persistent or 
patterned activation) may 
underlie neuronal plasticity by 
allowing the brain to change 
after an experience.

NMDA receptor
An ionotropic glutamate 
receptor found at many 
excitatory synapses. Upon 
binding to the neurotransmitter 
glutamate, this receptor opens 
a cation channel, allowing 
calcium ions to flow into the 
neuron. Ketamine binds  
the NMDA receptor and 
antagonizes its activation  
by glutamate.

Synaptic pruning
A regulated process in which 
axons and dendrites are 
eliminated to remove 
unnecessary synapses in an 
experience-​dependent fashion. 
In humans, pruning occurs 
primarily during childhood  
and after adolescence.

www.nature.com/nrm

R e v i e w s

196 | April 2020 | volume 21	



many of these issues by inhibiting all known substrates 
of mTORC1 and mTORC2 (refs41,226,227). Despite some 
concerns about tissue toxicity because of their broad 
effects, early clinical data suggest that catalytic mTOR 
inhibitors can be tolerated at effective doses228. However, 
prolonged treatment with these inhibitors can lead to a 
metabolic retrenchment that allows cancer cells to reac­
tivate Akt without positive input from mTORC2, high­
lighting resistance as a key problem that must be tackled 
by next-​generation therapies229–231.

mTOR in ageing
In line with a growing body of genetic and pharmaco­
logical evidence, mTOR activity is now recognized as a 
major driver of ageing — a process defined here as a pro­
gressive decline in physiological function that increases 
vulnerability to disease and death (Fig. 6b). Genetic 

inhibition of the mTORC1 pathway through depletion 
of mTOR or Raptor has been shown to extend lifespan 
in organisms as diverse as yeast232, nematodes233,234, 
flies235 and mammals236; in a similar vein, rapamycin 
treatment also promotes longevity across a wide swathe 
of the evolutionary tree237–240. Tantalizingly, rapamycin 
appears to prolong not just lifespan but also healthspan 
— the length of time that an organism enjoys efficient 
biological performance, free of disease or disability — 
suggesting that mTORC1 inhibition may slow ageing 
by reversing molecular changes associated with cellular 
deterioration241.

What are these mTORC1-sensitive molecular changes 
that affect ageing? One clue may come from dietary 
restriction, the only other intervention that produces a 
comparable and conserved increase in lifespan. Dietary 
restriction reduces nutrient intake without incurring 

Box 2 | mTOR, autophagy and neurodegeneration

Genetic evidence implicates autophagy — and its major regulator,  
mTOR complex 1 (mTORC1) — in several devastating neurodegenerative 
disorders273 (see the figure). These disorders, which include Alzheimer 
disease (AD), Parkinson disease (PD), Huntington disease (HD), 
amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), 
lead to the progressive, permanent destruction of neurons, wreaking 
havoc on cognition and motor control. Although most cases of 
neurodegeneration arise sporadically, increasing in frequency with age, 
certain heritable mutations can boost disease incidence and severity 
within families, with many such mutations mapping to genes associated 
with proteostasis and lysosomal function. Indeed, failures in autophagic 
clearance have emerged as a key hallmark of neurotoxic cell death. 
In AD, as in several of its pathological cousins, misfolded, ubiquitylated 
proteins appear to clog autophagic vacuoles, which subsequently 
accumulate in dystrophic neurites274,275. Because neuronal cells cannot 
divide to dilute unwanted macromolecules or organelles and must  
rely on autophagy, any jam in autolysosome clearance propagates 
through the entire endocytic machinery and may compound 
metabolic and immunological traumas that lie far afield from the  
initial amyloid stressor. Multiple groups have confirmed that deletion  
of essential autophagy genes in the brain is sufficient to induce 
neurodegeneration even in the absence of disease proteins276,277, 

supporting a model that puts autophagy — and not amyloids — at the 
core of neurodegenerative disease.

The recent failure of drugs for AD targeting amyloid-​β and tau in clinical 
trials has demonstrated that reduction of protein aggregates alone has 
little effect on cognitive function. Given the massive financial and societal 
costs of neurodegeneration, there is an urgent need for new therapies 
that delay or reverse disease progression through alternative mechanisms. 
Based on preclinical evidence, rapamycin may be a promising lead. 
Induction of autophagy through rapamycin treatment has been shown to 
eliminate aggregates and improve memory and behaviour in six different 
mouse models of AD, as well as several models of PD278–280. Moreover, as 
we will discuss below, rapamycin-​mediated inhibition of mTOR may also 
reverse some of the cellular effects of ageing, the most important risk factor 
for neurodegeneration237. It should be noted, however, that rapamycin does 
not penetrate the blood–brain barrier with ease and only partially blocks 
mTORC1 phosphorylation of autophagy regulator unc-51-like autophagy-​
activating kinase 1 (ULK1)42; in addition, chronic application of rapamycin 
for neuroprotection would likely disrupt major pathways inside and outside 
the brain. These caveats suggest that future therapeutic strategies may 
need to establish a precise balance of neuronal mTOR activity to maintain 
homeostasis — a goal that will require us to develop a more nuanced 
understanding of when, why, where and how mTOR acts in the brain.

CMA, chaperone-​mediated autophagy; CMT, Charcot–Marie–Tooth disease; TFE3, transcription factor E3; TFEB, transcription factor EB.
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malnutrition, pushing mTORC1 towards a catabolic 
regime. Indeed, dietary restriction is thought to counter 
ageing by acting through the mTORC1 pathway, as die­
tary restriction on top of chemical or genetic inhibition 
of mTORC1 fails to confer any additional longevity ben­
efit in flies, worms and yeast232,235,242. Intriguingly, dietary 
restriction of a single amino acid, methionine, is sufficient 
to increase lifespan in flies243, implying that restrictions 
on protein synthesis may have a particularly important 
anti-​ageing effect. Consistent with this observation, loss 
of the translation effector S6K1 extends lifespan in worms 
and mice, perhaps by halting the production of misfolded 
or aggregated proteins242,244. By reducing the energetic 
burden of translation, mTOR inhibition also relieves oxi­
dative stress and prevents the accumulation of harmful 
metabolic by-​products, leading to broad improvements 
in cellular function73.

In parallel with its downregulation of translation, 
mTOR inhibition restores autophagic capacity, which 
undergoes an age-​related decline in many tissues245. 
Autophagy degrades obsolete or damaged cellular com­
ponents and salvages them for ‘spare macromolecular 
parts’. Through this process, aged cells refresh their 
molecular equipment and clear damaged proteins and 
organelles, which have been implicated in age-​related 
diseases from cardiomyopathy to neurodegeneration. 
Underscoring the importance of autophagy in healthy 
ageing, direct activation of autophagic flux can sig­
nificantly increase lifespan and healthspan in mice246. 

Conversely, mTOR inhibition fails to extend lifespan in 
ATG-​deficient worms, indicating that mTOR modulates 
longevity at least partly through autophagy-​dependent 
mechanisms247,248.

mTORC1 has also been implicated in ageing at the 
tissue level. Several groups have shown that persistent 
mTORC1 signalling contributes to the exhaustion of 
stem cell pools, hindering tissue self-​renewal in aged 
organisms249,250. mTORC1 hyperactivity is also a distinc­
tive feature of senescent cells, which permanently arrest 
in the G0 phase of the cell cycle and undergo morpho­
logical alterations that eliminate sensitivity to amino acid 
and growth factor deprivation251. Exploiting translational 
programmes downstream of mTORC1, senescent cells 
synthesize and secrete pro-​inflammatory cytokines to 
exacerbate ageing-​related declines in fitness and tissue 
function252,253. Rapamycin treatment attenuates this 
inflammatory phenotype, although it is unclear whether 
mTORC1 inhibition can rescue cell cycle arrest or aid in 
the clearance of senescent cells.

Even though mTOR inhibitors are well validated as 
geroprotective agents in animal models, the potential 
side effects of chronic dosing (particularly insulin resist­
ance and immunosuppression) have thus far precluded 
their use in healthy elderly humans. Recent studies, how­
ever, suggest that these concerns are not insurmount­
able. Because side-​effect profiles for mTOR inhibitors 
have largely been inferred from patients undergoing 
cancer therapy or organ transplantation, they tend to 
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across a range of model organisms. 4E-​BP, 4E-​binding protein; HIF1α, hypoxia inducible factor 1α; PKC, protein kinase C; 
ROS, reactive oxygen species; SGK, serum- and glucocorticoid-​induced protein kinase; S6K1, p70 S6 kinase 1; SREBP, sterol 
regulatory element binding protein.
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reflect intense, high-​dose regimens. Far lower doses are 
needed for anti-​ageing benefits. Taking advantage of this 
distinction, one group found that intermittent dosing of 
rapamycin in mice could extend their lifespan without 
inciting glucose intolerance254,255. Another reported that 
low doses of mTOR inhibitors could actually improve 
immune function in elderly patients256. Efforts to harness 
mTOR inhibition as an anti-​ageing strategy will have to 
build on these studies to define safe and effective doses 
in human cohorts.

Conclusions and perspectives
Perched at the interface between organisms and their 
environments, the mTOR pathway toggles the balance 
of anabolism and catabolism in response to contextual 
signals and guides nearly every aspect of metabolic func­
tion. Recent work has clarified the logical structure of the 
pathway and drawn the lysosome into renewed focus; 
structural advances have also allowed us to see, mecha­
nistically, how key mTOR signalling nodes transduce 
nutritional information into molecular action. Building 
on careful in vivo studies, we have made remarkable 
progress in cataloguing the inputs and effectors of the 
mTOR pathway across various tissues and metabolic 
states, enhancing our understanding of mTOR signalling 
in health and disease.

Nonetheless, certain open questions remain stub­
bornly unresolved. Given that mTORC1 activation occurs  
at the lysosomal surface, how does the complex cap­
ture and phosphorylate its downstream substrates, 
which, with the exception of TFEB/TFE3, do not 
maintain lysosomal subpopulations? It is possible 
that lysosomal interactions with the endoplasmic 
reticulum, the Golgi and the plasma membrane may 
help bring mTORC1 into contact with some of its 

substrates257–259. Alternatively, while efforts to visualize 
the dynamics of the substrate search have not been con­
clusive260,261, we speculate that activated mTORC1 could 
exit the lysosome to phosphorylate targets at other 
loci in the cell, perhaps carrying Rheb in tow. Moving 
forward, we also seek an integrated understanding of 
mTOR signalling in specific tissues. Although many 
components of the mTOR pathway have been identified, 
it is not clear which regulatory inputs are dominant in 
any particular physiological milieu. In order to develop 
new therapeutics that evade some of the metabolic side 
effects of existing mTOR inhibitors, we hope to iden­
tify complex-​specific or tissue-​specific modulators of 
mTOR activity and establish them as targets for rational 
drug development.

One emerging theme from the study of mTOR dys­
regulation in human disease is that these pathologies are 
not just linked by a common aetiological basis — they 
also intersect with each other in mutually reinforcing 
ways. Just as excessive mTOR activity can lead to meta­
bolic syndrome, obesity accelerates molecular ageing, 
which in turn amplifies the risk of neurodegenerative 
disease and cancer. Thus, even though the complexity 
and breadth of the mTOR signalling network increases 
the risk of toxicity, the unique spectrum of mTOR-​
dependent processes is also one of its most powerful 
advantages as a therapeutic target. More so than other 
strategies to delay ageing or counter disease, mTOR inhi­
bition disrupts a wide variety of degenerative processes 
with a single intervention. Further insights into this 
fundamental pathway may ultimately lead to new treat­
ments for currently intractable diseases and transform 
our ability to regulate health and homeostasis.
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